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1 Introduction

1.1 Overview

The GRLIB IP Library is an integrated set of reusable IP cores, designed forsystem-on-chip
(SOC) development. The IP cores are centered around a common on-chip bus, and use a coherent
method for simulation and synthesis. The library is vendor independent, with support for different
CAD tools and target technologies. A unique plug&play method is used to configure and connect
the IP cores without the need to modify any global resources.

1.2 Library organization

GRLIB is organized around VHDL libraries, where each major IP (or IP vendor) is assigned a
unique library name. Using separate libraries avoids name clashes between IP cores and hides
unnecessary implementation details from the end user. Each VHDL library typically contains a
number of packages, declaring the exported IP cores and their interface types. Simulation and syn-
thesis scripts are created automatically by a global makefile. Adding and removing of libraries and
packages can be made without modifying any global files, ensuring that modification of one ven-
dor’s library will not affect other vendors. A few global libraries are provided to define shared data
structures and utility functions.

GRLIB provides automatic script generators for the Modelsim, Ncsim, Aldec, Sonata and GHDL
simulators, and the Synopsys, Synplify, Cadence, Mentor, Actel, Altera, Lattice, and Xilinx imple-
mentation tools. Support for other CAD tools can be easily be added.

1.3 On-chip bus

The GRLIB is designed to be ‘bus-centric’, i.e. it is assumed that most of the IP cores will be con-
nected through an on-chip bus. The AMBA-2.0 AHB/APB bus has been selected as the common
on-chip bus, due to its market dominance (ARM processors) and because it is well documented
and can be used for free without license restrictions. The figure below shows an example of a
LEON3 system designed with GRLIB:
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1.4 Distributed address decoding

Adding an IP core to the AHB bus is unfortunately not as straight-forward as just connecting the
bus signals. The address decoding of AHB is centralized, and a shared address decoder and bus
multiplexer must be modified each time an IP core is added or removed. To avoid dependencies on
a global resource, distributed address decoding has been added to the GRLIB cores and AMBA
AHB/APB controllers.

1.5 Interrupt steering

GRLIB provides a unified interrupt handling scheme by adding 32 interrupt signals to the AHB
and APB buses. An AMBA module can drive any of the interrupts, and the unit that implements
the interrupt controller can monitor the combined interrupt vector and generate the appropriate
processor interrupt. In this way, interrupts can be generated regardless of which processor or inter-
rupt controller is being used in the system, and does not need to be explicitly routed to a global
resource. The scheme allows interrupts to be shared by several cores and resolved by software.

1.6 Plug&Play capability

A broad interpretation of the term ‘plug&play’ is the capability to detect the system hardware con-
figuration through software. Such capability makes it possible to use software application or oper-
ating systems which automatically configure themselves to match the underlying hardware. This
greatly simplifies the development of software applications, since they do not need to be custom-
ized for each particular hardware configuration.

In GRLIB, the plug&play information consists of three items: a unique IP core ID, AHB/APB
memory mapping, and used interrupt vector. This information is sent as a constant vector to the
bus arbiter/decoder, where it is mapped on a small read-only area in the top of the address space.
Any AHB master can read the system configuration using standard bus cycles, and a plug&play
operating system can be supported.

To provide the plug&play information from the AMBA units in a harmonized way, a configuration
record for AMBA devices has been defined (figure 1). The configuration record consists of 8 32-
bit words, where four contain configuration words defining the core type and interrupt routing, and
four contain so called ‘bank address registers’ (BAR), defining the memory mapping.

Figure 1.AMBA configuration record

The configuration word for each device includes a vendor ID, device ID, version number, and
interrupt routing information. A configuration type indicator is provided to allow for future evolve-
ment of the configuration word. The BARs contain the start address for an area allocated to the
device, a mask defining the size of the area, information whether the area is cacheable or pre-fetch-
able, and a type declaration identifying the area as an AHB memory bank, AHB I/O bank or APB
I/O bank. The configuration record can contain up to four BARs and the core can thus be mapped
on up to four distinct address areas.

ADDR C/P MASK TYPE

31 20 19 16 15 4 3 0

Bank address register (BAR)

Configuration word

VENDOR ID DEVICE ID VERSION IRQ

31 24 23 12 11 5 4 0

CT

10 9
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1.7 Portability

GRLIB is designed to be technology independent, and easily implemented on both ASIC and
FPGA technologies. Portability support is provided for components such as single-port RAM,
two-port RAM, dual-port RAM, single-port ROM, clock generators and pads. The portability is
implemented by means of virtual components with a VHDL generic to select the target technol-
ogy. In the architecture of the component, VHDL generate statements are used to instantiate the
corresponding macro cell from the selected technology library. For RAM cells, generics are also
used to specify the address and data widths, and the number of ports.

1.8 Available IP cores

The library includes cores for AMBA AHB/APB control, the LEON3 and LEON4 SPARC proces-
sors, IEEE-754 floating-point unit, AHB/ABH bridge, 32-bit PC133 SDRAM controller, DDR1/2
controllers,, 32-bit PCI bridge with DMA, 10/100/1000 Mbit ethernet MAC, CAN-2.0 controller,
USB-2.0 host and device controllers, 8/16/32-bit PROM/SRAM controller, 32-bit SSRAM con-
troller, 32-bit GPIO port, timer unit, interrupt controller, PS/2 interface, VGA controller and many
other legacy cores. Memory generators are available for Actel, Altera, Atmel, Eclipse, Lattice,
UMC, Artisan, Virage and Xilinx.

1.9 Licensing

The main infra-structure of GRLIB is released in open-source under the GNU GPL license. This
means that designs based on the GPL version of GRLIB must be distributed in full source code
under the same license. For commercial applications where source-code distribution is not desir-
able or possible, Aeroflex Gaisler offers low-cost commercial IP licenses. Contact
sales@gaisler.com for more information or visit http://www.gaisler.com/ .
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2 Installation

2.1 Installation

GRLIB is distributed as a gzipped tar-file and can be installed in any location on the host system:
gunzip -c grlib-gpl-1.1.0-bxxxx.tar.gz | tar xf -

or

unzip grlib-gpl-1.1.0-bxxxx.zip

NOTE: Do NOT use unzip on the .tar.gz file, this will corrupt the files during extraction!

The distribution has the following file hierarchy:
bin various scripts and tool support files

boards support files for FPGA prototyping boards

designs template designs

doc documentation

lib VHDL libraries

netlists Vendor specific mapped netlists

software software utilities and test benches

verification test benches

GRLIB uses the GNU ‘make’ utility to generate scripts and to compile and synthesis designs. It
must therefore be installed on a unix system or in a ‘unix-like’ environment. Tested hosts systems
are Linux and Windows with Cygwin.

2.2 Directory organization

GRLIB is organized around VHDL libraries, where each IP vendor is assigned a unique library
name. Each vendor is also assigned a unique subdirectory under grlib/lib in which all vendor-spe-
cific source files and scripts are contained. The vendor-specific directory can contain subdirecto-
ries, to allow for further partitioning between IP cores etc.

The basic directories delivered with GRLIB under grlib-1.0.x/lib are:
grlib packages with common data types and functions

gaisler Aeroflex Gaisler’s components and utilities

tech/* target technology libraries for gate level simulation

techmap wrappers for technology mapping of marco cells (RAM, pads)

work components and packages in the VHDL work library

Other vendor-specific directories are also delivered with GRLIB, but are not necessary for the
understanding of the design concept. Libraries and IP cores are described in detail in separate doc-
umentation.

2.3 Host platform support

GRLIB is design to work with a large variety of hosts. The paragraphs below outline the hosts
tested by Aeroflex Gaisler. Other unix-based hosts are likely to work but are not tested. As a base-
line, the following host software must be installed for the GRLIB configuration scripts to work:

• Bash shell

• GNU make
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• GCC

• Tcl/tk-8.4

• patch utility

2.3.1  Linux

The make utility and associated scripts should work on most linux distribution. GRLIB is prima-
rily developed on linux hosts, and linux is the preferred platform.

2.3.2  Windows with Cygwin

The make utility and associated scripts will work, although somewhat slow. Note that gcc and the
make utility must be selected during the Cygwin installation. Warning: some versions of Cygwin
are know to fail due to a broken ‘make’ utility. In this case, try to use a different version of Cygwin
or update to a newer make.



10

3 LEON3 quick-start guide

3.1 Introduction

This chapter will provide a simple quick-start guide on how to implement a leon3 system using
GRLIB, and how to download and run software on the target system. Refer to chapters 3 - 6 for a
deeper understanding of the GRLIB organization.

3.2 Overview

Implementing a leon3 system is typically done using one of the template designs on the designs
directory. For this tutorial, we will use the LEON3 template design for the GR-XC3S-1500 board.
Implementation is typically done in three basic steps:

• Configuration of the design using xconfig

• Simulation of design and test bench

• Synthesis and place&route

The template design is located indesigns/leon3-gr-xc3s-1500 , and is based on three files:

• config.vhd- a VHDL package containing design configuration parameters. Automatically generated by the
xconfig GUI tool.

• leon3mp.vhd - contains the top level entity and instantiates all on-chip IP cores. It uses config.vhd to con-
figure the instantiated IP cores.

• testbench.vhd - test bench with external memory, emulating the GR-XC3S-1500 board.

Each core in the template design is configurable using VHDL generics. The value of these generics
is assigned from the constants declared in config.vhd, created with the xconfig GUI tool.
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3.3 Configuration

Change directory to designs/leon3-gr-xc3s-1500, and issue the command ‘make xconfig’ in a bash
shell (linux) or cygwin shell (windows). This will launch the xconfig GUI tool that can be used to
modify the leon3 template design. When the configuration is saved and xconfig is exited, the con-
fig.vhd is automatically updated with the selected configuration.

3.4 Simulation

The template design can be simulated in a test bench that emulates the prototype board. The test
bench includes external PROM and SDRAM which are pre-loaded with a test program. The test
program will execute on the LEON3 processor, and tests various functionality in the design. The
test program will print diagnostics on the simulator console during the execution.

The following command should be give to compile and simulate the template design and test
bench:

make vsim
vsim testbench

A typical simulation log can be seen below.
$ vsim testbench

VSIM 1> run -a
# LEON3 GR-XC3S-1500 Demonstration design
# GRLIB Version 1.0.15, build 2183
# Target technology: spartan3 ,  memory library: spartan3
# ahbctrl: AHB arbiter/multiplexer rev 1
# ahbctrl: Common I/O area disabled
# ahbctrl: AHB masters: 4, AHB slaves: 8
# ahbctrl: Configuration area at 0xfffff000, 4 kbyte
# ahbctrl: mst0: Gaisler Research        Leon3 SPARC V8 Processor
# ahbctrl: mst1: Gaisler Research        JTAG Debug Link
# ahbctrl: mst2: Gaisler Research        SpaceWire Serial Link
# ahbctrl: mst3: Gaisler Research        SpaceWire Serial Link
# ahbctrl: slv0: European Space Agency   Leon2 Memory Controller
# ahbctrl:       memory at 0x00000000, size 512 Mbyte, cacheable, prefetch
# ahbctrl:       memory at 0x20000000, size 512 Mbyte
# ahbctrl:       memory at 0x40000000, size 1024 Mbyte, cacheable, prefetch
# ahbctrl: slv1: Gaisler Research        AHB/APB Bridge
# ahbctrl:       memory at 0x80000000, size 1 Mbyte
# ahbctrl: slv2: Gaisler Research        Leon3 Debug Support Unit
# ahbctrl:       memory at 0x90000000, size 256 Mbyte
# apbctrl: APB Bridge at 0x80000000 rev 1
# apbctrl: slv0: European Space Agency   Leon2 Memory Controller
# apbctrl:       I/O ports at 0x80000000, size 256 byte
# apbctrl: slv1: Gaisler Research        Generic UART
# apbctrl:       I/O ports at 0x80000100, size 256 byte
# apbctrl: slv2: Gaisler Research        Multi-processor Interrupt Ctrl.
# apbctrl:       I/O ports at 0x80000200, size 256 byte
# apbctrl: slv3: Gaisler Research        Modular Timer Unit
# apbctrl:       I/O ports at 0x80000300, size 256 byte
# apbctrl: slv8: Gaisler Research        General Purpose I/O port
# apbctrl:       I/O ports at 0x80000800, size 256 byte
# apbctrl: slv12: Gaisler Research        SpaceWire Serial Link
# apbctrl:       I/O ports at 0x80000c00, size 256 byte
# apbctrl: slv13: Gaisler Research        SpaceWire Serial Link
# apbctrl:       I/O ports at 0x80000d00, size 256 byte
# grspw13: Spacewire link rev 0, AHB fifos 2x64 bytes, rx fifo 16 bytes, irq 11
# grspw12: Spacewire link rev 0, AHB fifos 2x64 bytes, rx fifo 16 bytes, irq 10
# grgpio8: 18-bit GPIO Unit rev 0
# gptimer3: GR Timer Unit rev 0, 8-bit scaler, 2 32-bit timers, irq 8
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# irqmp: Multi-processor Interrupt Controller rev 3, #cpu 1
# apbuart1: Generic UART rev 1, fifo 1, irq 2
# ahbjtag AHB Debug JTAG rev 0
# dsu3_2: LEON3 Debug support unit + AHB Trace Buffer, 2 kbytes
# leon3_0: LEON3 SPARC V8 processor rev 0
# leon3_0: icache 1*8 kbyte, dcache 1*4 kbyte
# clkgen_spartan3e: spartan3/e sdram/pci clock generator, version 1
# clkgen_spartan3e: Frequency 50000 KHz, DCM divisor 4/5
#
# **** GRLIB system test starting ****
# Leon3 SPARC V8 Processor
#   CPU#0 register file
#   CPU#0 multiplier
#   CPU#0 radix-2 divider
#   CPU#0 floating-point unit
#   CPU#0 cache system
# Multi-processor Interrupt Ctrl.
# Generic UART
# Modular Timer Unit
#   timer 1
#   timer 2
#   chain mode
# Test passed, halting with IU error mode
# ** Failure: *** IU in error mode, simulation halted ***
#    Time: 1104788 ns  Iteration: 0  Process: /testbench/iuerr File: testbench.vhd
# Stopped at testbench.vhd line 338
VSIM 2>

The test program executed by the test bench consists of two parts, a simple prom boot loader
(prom.S) and the test program itself (systest.c). Both parts can be re-compiled using the ‘make
soft’ command. This requires that the BCC tool-chain is installed on the host computer.

Note that the simulation is terminated by generating a VHDL failure, which is the only way of
stopping the simulation from inside the model. An error message is then printed:
# Test passed, halting with IU error mode
# ** Failure: *** IU in error mode, simulation halted ***
#    Time: 1104788 ns  Iteration: 0  Process: /testbench/iuerr File: testbench.vhd
# Stopped at testbench.vhd line 338

This error can be ignored.

3.5 Synthesis and place&route

The template design can be synthesized with either Synplify, Precision or ISE/XST. Synthesis can
be done in batch or interactively. To use synplify in batch mode, use the command:
make synplify

To use synplify interactively, use:

make synplify-launch

The corresponding command for ISE are:
make ise-map

and

make ise-launch

To perform place&route for a netlist generated with synplify, use:
make ise-synp

For a netlist generated with XST, use:
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make ise

In both cases, the final programming file will be called ‘leon3mp.bit’. See the GRLIB User’s Man-
ual chapter 3 for details on simulation and synthesis script files.

3.6 Simulation of post-synthesis netlist

If desired, it is possible to simulate the synthesized netlist in the test bench. The synplify synthesis
tool generates a VHDL netlist in the file synplify/leon3mp.vhm. To re-run the test bench with the
netlist, do as follows:
vcom synplify/leon3mp.vhm
vsim -c testbench
vsim> run -all

3.7 Board re-programming

The GR-XC3S-1500 FPGA configuration PROMs can be programmed from the shell window
with the following command:
make ise-prog-prom

For interactive programming, use Xilinx Impact software. See the GR-XC3S-1500 Manual for
details on which configuration PROMs to specify.

A pre-compiled FPGA bit file is provided in the bitfiles directory, and the board can be re-pro-
grammed with this bit file using:
make ise-prog-prom-ref

3.8 Running applications on target

To download and debug applications on the target board, GRMON debug monitor is used.
GRMON can be connected to the target using RS232, JTAG, ethernet or USB. The most conve-
nient way is probably to use JTAG. GRMON can the Xilinx parallel port cable programming cable
and or the Platfrom USB cable. See the GRMON manual for details. To connect using the parallel
port cable, do:
grmon -jtag -u

This should print the configuration of the target board:

initialising ..............
 detected frequency:  40 MHz

 Component                            Vendor
 LEON3 SPARC V8 Processor             Gaisler Research
 AHB Debug UART                       Gaisler Research
 AHB Debug JTAG TAP                   Gaisler Research
 SVGA frame buffer                    Gaisler Research
 GR Ethernet MAC                      Gaisler Research
 AHB ROM                              Gaisler Research
 AHB/APB Bridge                       Gaisler Research
 LEON3 Debug Support Unit             Gaisler Research
 DDR266 Controller                    Gaisler Research
 Generic APB UART                     Gaisler Research
 Multi-processor Interrupt Ctrl       Gaisler Research
 Modular Timer Unit                   Gaisler Research
 Keyboard PS/2 interface              Gaisler Research
 Keyboard PS/2 interface              Gaisler Research

To download an application, use the ‘load’ command. To run it, use ‘run’ :
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load stanford.exe
run

The console output will occur in the grmon window if grmon was started with -u, otherwise it will
be send to the RS232 connector of the board.

3.9 Flash PROM programming

The GR-XC3S-1500 board has a 64 Mbit (8Mx8) Intel flash PROM for LEON3 application soft-
ware. A PROM image is typically created with the sparc-elf-mkprom utility provided with the
BCC tool chain. The suitable mkprom parameters for the GR-XC3S-1500 board are:
sparc-elf-mkprom -romws 4 -freq 40 -col 9 -nosram -sdram 64 -msoft-float -baud 38400

Note that the -freq option should reflect the selected processor frequency, which depends on the
clock generator settings. If the processor includes an FPU, the -msoft-float switch can be omitted.

Once the PROM image has been created, the on-board flash PROM can be programmed through
GRMON. The procedure is described in the GRMON manual, below is the required GRMON
command sequence:
flash erase all
flash load prom.out
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4 Implementation flow

4.1 Introduction

The following sections will describe how simulation and synthesis is performed using the GRLIB
make system. It is recommended to try out the various commands on one of the template designs,
such as designs/leon3mp.

4.2 Using Makefiles and generating scripts

GRLIB consists of a set of VHDL libraries from which IP cores are instantiated into a local design.
GRLIB is designed to reside in a global location and to be used in read-only mode. All compila-
tion, simulation and synthesis is done in a local design directory, using tool-specific scripts. The
GRLIB IP cores (components) are instantiated in the local design by the inclusion of various
GRLIB packages, declaring the components and associated data types.

A design typically contains of one or more VHDL files, and a local makefile:
bash$ ls -g mydesign

-rw-r--r--    1 users        1776 May 25 10:37 Makefile

-rw-r--r--    1 users       12406 May 25 10:46 mydesign.vhd

The GRLIB files are accessed through the environment variable GRLIB. This variable can either
be set in the local shell or in a local makefile, since the ‘make’ utility is used to automate various
common tasks. A GRLIB-specific makefile is located in bin/Makefile. To avoid having to specify
the GRLIB makefile using the -f option, the local makefile should includes the GRLIB makefile:
GRLIB=../../grlib

include $(GRLIB)/bin/Makefile

Running ‘make help’ with this makefile will print a short menu:
$ make help

 interactive targets:

 make avhdl-launch         : start active-hdl gui mode
 make riviera-launch       : start riviera
 make vsim-launch          : start modelsim
 make ncsim-launch         : compile design using ncsim
 make sonata-launch        : compile design using sonata
 make actel-launch-synp    : start Actel Designer for current project
 make ise-launch           : start ISE project navigator for XST project
 make ise-launch-synp      : start ISE project navigator for synplify project
 make quartus-launch       : start Quartus for current project
 make quartus-launch-synp  : start Quartus for synplify project
 make synplify-launch      : start synplify
 make xgrlib               : start grlib GUI

 batch targets:

 make avhdl        : compile design using active-hdl gui mode
 make vsimsa       : compile design using active-hdl batch mode
 make riviera      : compile design using riviera
 make sonata       : compile design using sonata
 make vsim         : compile design using modelsim
 make ncsim        : compile design using ncsim
 make ghdl         : compile design using GHDL
 make actel        : synthesize with synplify, place&route Actel Designer
 make ise          : synthesize and place&route with Xilinx ISE
 make ise-map      : synthesize design using Xilinx XST
 make ise-prec     : synthesize with precision, place&route with Xilinx ISE
 make ise-synp     : synthesize with synplify, place&route with Xilinx ISE
 make isp-synp     : synthesize with synplify, place&route with ISPLever
 make quartus      : synthesize and place&route using Quartus
 make quartus-map  : synthesize design using Quartus
 make quartus-synp : synthesize with synplify, place&route with Quartus
 make precision    : synthesize design using precision
 make synplify     : synthesize design using synplify
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 make scripts      : generate compile scripts only
 make clean        : remove all temporary files except scripts
 make distclean    : remove all temporary files

Generating tool-specific compile scripts can be done as follows:
$ make scripts
$ ls compile.*
compile.dc  compile.ncsim  compile.synp  compile.vsim  compile.xst compile.ghdl

The local makefile is primarily used to generate tool-specific compile scripts and project files, but
can also be used to compile and synthesize the current design. To do this, additional settings in the
makefile are needed. The makefile in the design template grlib/designs/leon3mp can be seen as an
example:
$ cd grlib/designs/leon3mp
$ cat Makefile
GRLIB=../..
TOP=leon3mp
BOARD=gr-pci-xc2v
include $(GRLIB)/boards/$(BOARD)/Makefile.inc
DEVICE=$(PART)-$(PACKAGE)$(SPEED)
UCF=$(GRLIB)/boards/$(BOARD)/$(TOP).ucf
QSF=$(BOARD).qsf
EFFORT=1
VHDLSYNFILES=config.vhd leon3mp.vhd
VHDLSIMFILES=testbench.vhd
SIMTOP=testbench
SDCFILE=$(GRLIB)/boards/$(BOARD)/default.sdc
BITGEN=$(GRLIB)/boards/$(BOARD)/default.ut
CLEAN=local-clean
include $(GRLIB)/bin/Makefile

The table below summarizes the common (target independent) ‘make’ targets:

Simulation, synthesis and place&route of GRLIB designs can also be done using a graphical tool
calledxgrlib . This tool is described further in chapter “XGrlib graphical implementation tool” on
page 37.

TABLE 1. Common make targets

Make target Description

scripts Generate GRLIB compile scripts for all supported tools

xconfig Run the graphic configuration tool (leon3 designs)

clean Remove all temporary files except scripts and project files

distclean Remove all temporary files

xgrlib Run the graphical implementation tool (see page 29)
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4.3 Simulating a design

The ‘make scripts’ command will generate compile scripts and/or project files for the modelsim,
ncsim and ghdl simulators. This is done by scanning GRLIB for simulation files according to the
method described in “GRLIB organisation” on page 72. These scripts are then used by further
make targets to build and update a GRLIB-based design and its test bench. The local makefile
should set the VHDLSYNFILES to contain all synthesizable VHDL files of the local design. Like-
wise, the VHDLSIMFILES variable should be set to contain all local design files to be used for
simulation only. The variable TOP should be set to the name of the top level design entity, and the
variable SIMTOP should be set to the name of the top level simulation entity (e.g. the test bench).
VHDLSYNFILES=config.vhd ahbrom.vhd leon3mp.vhd

VHDLSIMFILES=testbench.vhd

TOP=leon3mp

SIMTOP=testbench

The variables must be set before the GRLIB makefile is included, as in the example above.

All local design files are compiled into the VHDL work library, while the GRLIB cores are com-
piled into their respective VHDL libraries.

The following simulator are currently supported by GRLIB:

TABLE 2. Supported simulators

Simulator Comments

GNU VHDL (GHDL) version 0.25, VHDL only

Aldec Active-HDL batch and GUI

Aldec Riviera

Mentor Modelsim version version 6.1e or later

Cadence NcSim IUS-5.8-sp3 and later

Synphony-EDA Sonata verison 3.1 or later, VHDL only
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4.4 Synthesis and place&route

Themake scripts command will scan the GRLIB files and generate compile and project files for all
supported synthesis tools. For this to work, a number of variables must be set in the local makefile:
TOP=leon3mp
TECHNOLOGY=virtex2
PART=xc2v3000
PACKAGE=fg676
SPEED=-4
VHDLSYNFILES=config.vhd ahbrom.vhd leon3mp.vhd
SDCFILE=
XSTOPT=-resource_sharing no
DEVICE=xc2v3000-fg676-4
UCF=default.ucf
EFFORT=std
BITGEN=default.ut

The TOP variable should be set to the top level entity name to be synthesized. TECHNOLOGY,
PART, PACKAGE and SPEED should indicate the target device parameters. VHDLSYNFILES
should be set to all local design files that should be used for synthesis. SDCFILE should be set to
the (optional) Synplify constraints file, while XSTOPT should indicate additional XST synthesis
options. The UCF variable should indicate the Xilinx constraint file, while QSF should indicate the
Quartus constraint file. The EFFORT variable indicates the Xilinx place&route effort and the BIT-
GEN variable defines the input script for Xilinx bitfile generation.

The technology related variables are often defined in a makefile include file in the board support
packages under GRLIB/boards. When a supported board is targeted, the local makefile can include
the board include file to make the design more portable:
BOARD=$(GRLIB)/boards/gr-pci-xc2v
include $(BOARD)/Makefile.inc
SDCFILE=$(BOARD)/$(TOP).sdc
UCF=$(BOARD)/$(TOP).ucf
DEVICE=$(PART)-$(PACKAGE)-$(SPEED)

The following synthesis tools are currently supported by GRLIB:

4.5 Skipping unused libraries, directories and files

GRLIB contains a large amount of files, and creating scripts and compiling models might take
some time. To speed up this process, it is possible to skip whole libraries, directories or individual

TABLE 3. Supported synthesis and place&route tools

Syntesis and place&route tool Recommended version

Actel Designer/Libero version 8.6

Altera Quartus version 6.0 and later

Cadence RTLC version 6.1 and later

Lattice ispLEVER version 5.1

Mentor Leonardo Precision 2009a.138

Synopsys DC 2007.3

Synplify version 8.9 and later

Xilinx ISE/XST version 10.3, 11.4
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files from being included in the tool scripts. Skipping VHDL libraries is done by defining the con-
stant LIBSKIP in the Makefile of the current design, before the inclusion of the GRLIB global
Makefile.

To skip a directory in a library, variable DIRSKIP should be used. All directories with the defined
names will be excluded when the tool scripts are built. In this way, cores which are not used in the
current design can be excluded from the scripts. To skip an individual file, the variable FILESKIP
should be set to the file(s) that should be skipped. Below is an example from the leon3-digilent-
xc3s1000 template design. All target technology libraries except unisim (Xilinx) are skipped, as
well as cores such as PCI, DDR and Spacewire. Care has to be taken to skip all dependent directo-
ries when a library is skipped.

LIBSKIP = core1553bbc core1553brm core1553brt gr1553 corePCIF \

tmtc openchip micron hynix cypress ihp gleichmann opencores spw

DIRSKIP = b1553 pcif leon2 leon2ft crypto satcan pci leon3ft ambatest \

spacewire ddr can usb ata

FILESKIP = grcan.vhd

include $(GRLIB)/bin/Makefile

By default, all technology cells and mapping wrappers are included in the scripts and later com-
piled. To select only one or a sub-set of technologies, the variable TECHLIBS can be set in the
makefile:
TECHLIBS = unisim

The table below shows which libraries should added to TECHLIBS for each supported technol-
ogy.

TABLE 4. TECHLIB settings for various target technologies

Technology TECHLIBS defines

Xilinx (All) unisim simprim

Altera Stratix-II altera altera_mf stratixii

Altera Cyclone-III altera altera_mf cycloneiii

Altera others altera altera_mf

Actel Axcelerator axcelerator

Actel Axcelerator DSP axcelerator

Actel Proasic3 proasic3

Lattice ec

Quicklogic eclipsee

Atmel ATC18 atc18 virage

Atmel ATC18RHA atc18rha_cell

eASIC 90 nm nextreme

IHP 0.25 ihp25

IHP 0.25 RH sgb25vrh

Aeroflex 0.25 RH ut025crh

Ramon 0.18 RH rh_lib18t
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Note that some technologies are not availble in the GPL version. Contact Aeroflex Gaisler for
details.

UMC 0.18 um umc18

TSMC 90 nm tsmc90

TABLE 4. TECHLIB settings for various target technologies

Technology TECHLIBS defines
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4.6 Tool-specific usage

4.6.1  GNU VHDL (GHDL)

GHDL is the GNU VHDL compiler/simulator, available from http://ghdl.free.fr/. It is used mainly
on linux hosts, although a port to windows/cygwin has recently been reported.

The complete GRLIB as well as the local design are compiled bymake ghdl. The simulation models
will be stored locally in a sub-directory (./gnu). A ghdl.path file will be created automatically, con-
taining the proper VHDL library mapping definitions. A sub-sequent invocation ofmake ghdl will
re-analyze any outdated files in the WORK library using a makefile created with ‘ghdl --gen-
makefile’. GRLIB files will not be re-analyzed without amake ghdl-clean first.

GHDL creates an executable with the name of the SIMTOP variable. Simulation is started by
directly executing the created binary:
$ ./testbench

TABLE 5. GHDL make targets

Make target Description

ghdl Compile or re-analyze local design

ghdl-clean Remove compiled models and temporary files

ghdl-run Run test bench in batchmode

TABLE 6. GHDL scripts and files

File Description

compile.ghdl Compile script for GRLIB files

make.ghdl Makefile to rebuild local design

gnu Directory with compiled models

SIMTOP Executable simulation model of test bench
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4.6.2  Cadence ncsim

The complete GRLIB as well as the local design are compiled and elaborated in batch mode by
make ncsim . The simulation models will be stored locally in a sub-directory (./xncsim). A cds.lib
file will be created automatically, containing the proper VHDL library mapping definitions, as
well as an empty hdl.var. Simulation can then be started by usingmake ncsim-launch .

Figure 2. Ncsim graphical user interface

To rebuild the local design, runmake ncsim again. This will use the ncupdate utility to rebuild out-
of-date files. The tables below summarizes the make targets and the files creates by make scripts.

TABLE 7. Ncsim make targets

Make target Description

ncsim Compile or re-analyze GRLIB and local design

ncsim-clean Remove compiled models and temporary files

ncsim-launch Start modelsim GUI on current test bench

ncsim-run Run test bench in batchmode

TABLE 8. Ncsim scripts and files

File Description

compile.ncsim Compile script for GRLIB files

make.ncsim Makefile to rebuild GRLIB and local design

xncsim Directory with compiled models
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4.6.3  Mentor ModelSim

The complete GRLIB as well as the local design are compiled bymake vsim. The compiled simula-
tion models will be stored locally in a sub-directory (./modelsim). A modelsim.ini file will be cre-
ated automatically, containing the necessary VHDL library mapping definitions. Runningmake
vsim again will then use a vmake-generated makefile to check dependencies and rebuild out of date
modules..

An other way to compile and simulate the library with modelsim is to use a modelsim project file.
When doingmake scripts, a modelsim project file is created. It is then possible to start vsim with
this project file and perform compilation within vsim. In this case, vsim should be started with
make vsim-launch. In the vsim window, click on the build-all icon to compile the complete library
and the local design. The project file also includes one simulation configuration, which can be
used to simulate the test bench (see figure below).

Figure 3. Modelsim simulator window using a project file

TABLE 9. Modelsim make targets

Make target Description

vsim Compile or re-analyze local design

vsim-clean Remove compiled models and temporary files

vsim-launch Start modelsim GUI on current test bench

vsim-fix Run aftermake vsim to fix problems with make in CygWin

vsim-run Run test bench in batchmode

TABLE 10. Modelsim scripts and files

File Description

compile.vsim Compile script for GRLIB files

make.work Makefile to rebuild GRLIB and local design

modelsim Directory with compiled models

SIMTOP.mpf Modelsim project file for compilation and simulation
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4.6.4  Aldec Active-HDL

The Active-HDL tool from Aldec can be used in the standalone batch mode (vsimsa.bat) and in the
GUI mode (avhdl.exe, or started from Windows icon/menu).

The batch mode does not support waveforms and is generally not directly transferable to the GUI
mode. The batch mode uses ModelSim compatible command line names such asvlib andvcom. To
use the batch mode, one must ensure that these commands are visible in the shell to be used. Note
that the batch mode simulator requires a separate license from Active-HDL.

In batch mode, the completed GRLIB as well as the local design are compiled bymake vsimsa. The
compiled simulation models will be stored locally in a sub-directory (./activehdl). A vsimsa.cfg
file will be created automatically, containing the necessary VHDL library mapping definitions.
The simulation can then be started using the Active-HDLvsimsa.bator vsimcommand. The simu-
lation can also be started withmake vsimsa-run.

Another way to compile and simulate the library is with the Active-HDL GUI using atcl command
file. When doingmake avhdl, thetcl command file is automatically created for GRLIB and the local
design files. The file can then be executed within Active-HDL withdo avhdl.tcl, creating all neces-
sary libraries and compiling all files. The compiled simulation models will be stored locally in a
sub-directory (./work). Note that only the local design files are directly accessible from the design
browser within Active-HDL. The compilation and simulation can also be started from the cygwin
command line withmake avhdl-launch.

Note that it is not possible to use both batch and GUI mode in the same design directory.

TABLE 11. Active-HDL make targets

Make target Description

vsimsa Compile GRLIB and local design

vsimsa-clean Remove compiled models and temporary files

vsim-run Run test bench in batch mode (must be compiled first)

avhdl Setup GRLIB and local design

avhdl-clean Remove compiled models and temporary files

avhdl-launch Compile and Run test bench in GUI mode (must be setup first)

TABLE 12. Active-HDL scripts and files

File Description

compile.asim Compile script for GRLIB files (batch mode)

make.asim Compile script for GRLIB files and local design (batch mode)

activehdl Directory with compiled models (batch mode)

work Directory with compiled models (GUI mode)

avhdl.tcl Active-HDLtcl file for compilation and simulation (GUI mode)
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4.6.5  Aldec Riviera

The Riviera tool from Aldec can be used in the standalone batch mode and in the GUI mode. The
two modes are compatible, using the same compiled database.

In both modes, the completed GRLIB as well as the local design are compiled bymake riviera. The
compiled simulation models will be stored locally in a sub-directory (./riviera). A vsimsa.cfg file
will be created automatically, containing the necessary VHDL library mapping definitions.

The standalone batch mode simulation can be started withmake riviera-run . The GUI mode simula-
tion can be started withmake riviera-launch.

TABLE 13. Riviera make targets

Make target Description

riviera Compile GRLIB and local design

riviera-clean Remove compiled models and temporary files

riviera-run Run test bench in batch mode (must be compiled first)

riviera-launch Run test bench in GUI mode (must be compiled first)

TABLE 14. Riviera scripts and files

File Description

riviera Directory with compiled models

riviera.do Rivera script file for simulation (GUI mode)
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4.6.6  Symphony-EDA Sonata

The complete GRLIB as well as the local design are compiled bymake sonata. The compiled simu-
lation models will be stored locally in a sub-directory (./sonata). A symphony.ini file will be cre-
ated automatically, containing the necessary VHDL library mapping definitions. To run the Sonata
simulator in GUI mode, domake sonata-launchor start Sonata using the crated sonata.sws project
file. Sonata can also be run in batch mode, withmake sonata-run. The VHDL work library will be
mapped on library ‘sonata’, as ‘work’ is reserved and cannot be used.

TABLE 15. Sonata make targets

Make target Description

sonata Compile GRLIB and local design

sonata-clean Remove compiled models and temporary files

sonata-run Compile GRLIB and run test bench in batch mode

sonata-launch Compiler GRLIb and run test bench in GUI mode

TABLE 16. Riviera scripts and files

File Description

sonata Directory with compiled models

symphony.ini Sonata library mapping for batch simulation

sonata.sws Sonata project file for GUI version
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4.6.7  Synthesis with Synplify

The make scripts command will create a compile.synp file which contains Synplify tcl commands
for analyzing all GRLIB files and a synplify project file called TOP_synplify.prj, where TOP will
be replaced with the name of the top level entity.

Synthesizing the design in batch mode using the generated project file can be done in one step
usingmake synplify. All synthesis results will be stored locally in a sub-directory (./synplify). Run-
ning Synplify in batch requires that it supports the -batch option (Synplify Professional). If the
installed Synplify version does not support -batch, first create the project file and then run Synplify
interactively. By default, the synplify executable is called ‘synplify_pro’. This can be changed by
supplying the SYNPLIFY variable to ‘make’:
make synplify SYNPLIFY=synplify_pro.exe

The synthesis script will set the following mapping option by default:
set_option -symbolic_fsm_compiler 0

set_option -resource_sharing 0

set_option -use_fsm_explorer 0

set_option -write_vhdl 1

set_option -disable_io_insertion 0

Additional options can be set through the SYNPOPT variable in the Makefile:
SYNPOPT="set_option -pipe 0; set_option -retiming 1”

Note that the Synplify tool does have some bugs, which can cause the generation of corrupt netlist
for large designs. Currently, the most stable version seems to be 8.9.

TABLE 17. Synplify make targets

Make target Description

synplify Synthesize design in batch mode

synplify-clean Remove compiled models and temporary files

synplify-launch Start synplify interactively using generated project file

TABLE 18. Synplify scripts and files

File Description

compile.synp Tcl compile script for all GRLIB files

TOP_synplify.prj Synplify project file

synplify Directory with netlist and log files
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4.6.8  Synthesis with Mentor Precision

Themake scripts command will create a TOP_precision.tcl file which contains tcl script to create a
Precision project file. The project file (TOP_precision.psp) is created on the first invocation of
Precision, but can also be created manually withprecision -shell -file TOP_precision.tcl.

Synthesizing the design in batch mode can be done in one step usingmake precision. All synthesis
results will be stored locally in a sub-directory (./precision). Precision can also be run interactively
by issuingmake precision-launch. By default, the Precision executable is called with ‘precision’. This
can be changed by supplying the PRECISION variable to ‘make’:
make precision PRECISION=/usr/local/bin/precision

TABLE 19. Precision make targets

Make target Description

precision Synthesize design in batch mode

precision-clean Remove compiled models and temporary files

precision-launch Start Precision interactively using generated project file

TABLE 20. Precision scripts and files

File Description

TOP_precision.tcl Tcl compile script to create Precision project file

TOP_precision.psp Precision project file

precision Directory with netlist and log files
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4.6.9  Actel Designer

Actel Designer is used to place&route designs targeting Actel FPGAs. It does not include a syn-
thesis engine, and the design must first be synthesized with synplify.

Themake scripts command will generate a tcl script to perform place&route of the local design
in batch mode. The tcl script is named TOP_designer.tcl, where TOP is replaced with the name of
the top entity.

The commandmake actel will place&route the design using the created tcl script. The design
database will be place in actel/TOP.adb. The commandmake actel-launch will load the edif
netlist of the current design, and start Designer in interactive mode.

GRLIB includes a leon3 design template for the GR-CPCI-AX board from Pender/Gaisler. The
template design is located designs/leon3-gr-cpci-ax. The local design file uses board settings from
the boards/gr-cpci-ax directory. The leon3-gr-cpci-ax design can be used a template for other AX-
based projects.

GRLIB also includes a leon3 template design for the Actel CoreMP7 board (Proasic3-1000). It is
located in designs/leon3-actel-coremp7.

TABLE 21. Actel Designer make targets

Make target Description

actel Place&route design in batch mode

actel-clean Remove compiled models and temporary files

actel-launch Start Designer interactively using synplify netlist

TABLE 22. Actel Designer scripts and files

File Description

TOP_designer.tcl Batch script for Actel Designer place&route
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4.6.10  Actel Libero

Actel Libero is an integrated design environment for implementing Actel FPGAs. It consists of
Actel-specific versions of Synplify and Modelsim, together with the Actel Designer back-end tool.

Using Libero to implement GRLIB designs is possible using Libero-8.1 and later versions. The
make scripts command will create a Libero project file called TOP_libero.prj. Libero can then be
started withlibero TOP_libero.prj , or by the commandmake libero-launch . Implementation
of the design is done using the normal Libero flow.

Note that when synplify is launched from Libero the first time, the constraints file defined in the
local Makefile is not included in the project, and must be added manually. Before simulation is
started first time, the file testbench.vhd in the template design should be associated as stimulify
file.

TABLE 23. Libero make targets

Make target Description

scripts Created libero project file

libero-launch Create project file and launch libero

TABLE 24. Libero scripts and files

File Description

TOP_libero.prj Libero project file
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4.6.11  Altera Quartus

Altera Quartus is used for Altera FPGA targets, and can be used to both synthesize and
place&route a design. It is also possible to first synthesize the design with synplify and then
place&route with Quartus.

The make scripts command will generate two project files for Quartus, one for an EDIF flow
where a netlist has been created with synplify and one for a Quartus-only flow. The project files
are named TOP.qpf and TOP_synplify.qpf, where TOP is replaced with the name of the top entity.

The commandmake quartus will synthesize and place&route the design using a quartus-only
flow in batch mode. The commandmake quartus-synp will synthesize with synplify and run
place&route with Quartus. Interactive operation is achieved through the commandmake quartus-
launch (quartus-only flow), ormake quartus-launch-synp (EDIF flow). Quartus can also be
started manually withquartus TOP.qpf  or quartus TOP_synplify.qpf .

GRLIB includes a leon3 template design for the HPE-Mini board from Gleichmann Electronics.
The template design is located designs/leon3-ge-hpe-mini. and uses board settings from the
boards/ge-hpe-mini directory. The leon3-ge-hpe-mini design can favorably be used a template for
other Altera-based projects. It is essential that Quartus version 6.0 or later is used.

TABLE 25. Altera Quartus make targets

Make target Description

quartus Synthesize and place&route design with Quartus in batch mode

quartus-clean Remove compiled models and temporary files

quartus-launch Start Quartus interactively using Quartus-only flow

quartus-launch-synp Start Quartus interactively using EDIF flow

quartus-map Synthesize design with Quartus in batch mode

quartus-synp Synthesize with synplify and place&route with Quartus in batch mode

quartus-prog-fpga Program FPGA in batch mode

TABLE 26. Altera Quartus scripts and files

File Description

TOP.qpf Project file for Quartus-only flow

TOP_synplify.qpf Project file for EDIF flow
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4.6.12  Xilinx ISE

Xilinx ISE is used for Xilinx FPGA targets, and can be used to both synthesize and place&route a
design. It is also possible to first synthesize the design with synplify and the place&route with ISE.

The make scripts command will create a compile.xst file which contains XST commands for
analyzing all GRLIB files. The compile.xst can be run manually usingxst -ifn compile.xstor through
make ise-map. An XST script to analyze and synthesize the local design will be created automati-
cally, and called TOP.xst. To synthesize and place&route in one go, usemake ise.

Themake scriptscommand also generates .npl project files for the ISE-8 project navigator, for both
EDIF flow where a netlist has been created with synplify and for ISE/XST flow. The project navi-
gator can be launched withmake ise-launch-synpfor the EDIF flow, and withmake ise-launch8for the
XST flow. The project navigator can also be started manually withise TOP.npl or ise
TOP_synplify.npl. The .npl files are intended to be used with ISE 6 - 8.

For ISE-9 and ISE-10, an .ise file will be generated using xtclsh whenmake ise-launchis given,
or by make TOP.ise. The Xilinx xtclsh operate very slowly, so generation of the .ise file will take
10 - 20 minutes (!).

For ISE-11, an XML project file is created (TOP.xise). The ISE-11 project navigator can be started
using the .xise file directly, which is much faster than generating a corresponding .ise file with
xtclsh. When executingmake ise-launch, the version of the ISE installation will be automatically
detected and the project manager will be launched with the appropriate project file.

It is generally recommended to use the latest version of ISE (11.4 at the time of writing). The XST
option ‘-fsm_extract no’ should be used to avoid possible netlist corruption by the FSM compiler.

Several Xilinx FPGA boards are supported in GRLIB, and can be re-programmed usingmake ise-
prog-fpga andmake ise-prog-prom. The first command will only re-program the FPGA configuration,
while the second command will reprogram the configuration proms (if available). Programming
will be done using the ISE Impact tool in batch mode.

When simulating designs that depends on Xilinx macro cells (RAM, PLL, pads), a built-in version
of the Xilinx UNSIM simulation library will be used. The built-in library has reduced functional-
ity, and only contains the cells used in grlib. The full Xilinx UNISIM library can be installed using
make install-unisim. This will copy the UNISIM files from ISE into grlib. Amake distcleanmust
first be given before the libraries can be used. It is possible to revert to the built-in UNISIM librar-
ies by issuingmake uninstall-unisim. Note: to install the Xilinx UNISIM files, the variable XIL-
INX must point to the installation path of ISE. The variable is normally set automatically during
installation of ISE. To compile the Xilinx UNISIM libraries with modelsim, the switch -explicit
must be given to vcom. This is done by setting the variableVCOMOPT=-explicit in the local
Makefile.

TABLE 27. Xilinx ISE make targets

Make target Description

ise Synthesize and place&route design with XST in batch mode

ise-prec Synthesize and place&route design with Precision in batch mode

ise-synp Synthesize and place&route design with Synplify in batch mode

ise-clean Remove compiled models and temporary files

ise-launch Start project navigator interactively using XST flow

ise-launch-synp Start project navigator interactively using EDIF flow

ise-map Synthesize design with XST in batch mode

ise-prog-fpga Re-program FPGA on target board using JTAG

ise-prog-fpga-ref Re-program FPGA on target board with reference bit file
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ise-prog-prom Re-program configuartion proms on target board using JTAG

ise-prog-prom-ref Re-program configuartion proms with reference bit file

install-unisim Install Xilinx UNISIM libraries into grlib

uninstall-unisim Remove Xilinx UNISIM libraries from grlib

TABLE 28. Xilinx ISE scripts and files

File Description

compile.xst XST synthesis include script for all GRLIB files

TOP.xst XST synthesis script for local design

TOP.npl ISE 8 project file for XST flow

TOP.ise ISE 9/10project file for XST flow

TOP.xise ISE 11 XML project file for XST flow

TOP_synplify.npl ISE 8project file for EDIF flow

TABLE 27. Xilinx ISE make targets

Make target Description
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4.6.13  Lattice ISP Tools

Implementing GRLIB design on Lattice FPGAs is supported with Synplify for synthesis and the
Lattice ISP Lever for place&route. Themake isp-synpcommmand will automatically synthesize and
place&route a Lattice design. The associated place&route script is provided in bin/route_lattice,
and can be modified if necessary. Supported FPGA families are EC and ECP. The template design
leon3-hpe-mini-lattice is a Lattice ECP design which can beused to test the implementation flow.
On linux, it might be necessary to source the ISP setup script in order to set up necessary paths:

source $ISPLEVER_PATH/ispcpld/bin/setup_lv.sh

TABLE 29. Lattice ISP make targets

Make target Description

isp-synp Synthesize and place&route design with Sunplify in batch mode

isp-clean Remove compiled models and temporary files

isp-prom Create FPGA prom
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4.6.14  Synthesis with Synopsys Design Compiler

The make scripts command will create a compile.dc file which contains Design Compiler com-
mands for analyzing all GRLIB files. The compile.dc file can be run manually using ‘dc_shell -f
compile.dc’ or throughmake dc. A script to analyze and synthesize the local design is created auto-
matically and called TOP.dc where TOP is the top entity name:

$ cat netcard.dc

sh mkdir synopsys

hdlin_ff_always_sync_set_reset = true

hdlin_translate_off_skip_text = true

include compile.dc

analyze -f VHDL -library work netcard.vhd

elaborate netcard

write -f db -hier  netcard -output netcard.db

quit

The created script will analyze and elaborate the local design, and save it to a synopsys .db file.
Compilation and mapping will not be performed, the script should be seen as a template only.

Synopsys DC is also not without bugs, and the usage of version 2003.06.SP1 or 2006.06.SP3 is
strongly recommended.

The make scripts command will also create a top-level synthesis script for dc_shell-xg-t. The file
will be called TOP_dc.tcl. It is recommended to use the dc_shell-xg-t shell and ddc file format,
arther then the older db format. This allows a single-pass top-down synthesis of large designs
without running out of memory.

4.6.15  Synthesis with Cadence RTL Compiler

The make scripts command will create a compile.rc file which contains RTL Compiler commands
for analyzing all GRLIB files. The compile.rc file can be run manually usingrc -files compile.rc or
throughmake rc. A script to analyze and synthesize the local design is created automatically and
called TOP.rc where TOP is the top entity name:
$ cat netcard.rc

set_attribute input_pragma_keyword "cadence synopsys g2c fast ambit pragma"

include compile.rc

read_hdl -vhdl -lib work netcard.vhd

elaborate netcard

write_hdl -generic > netcard_gen.v

The created script will analyze and elaborate the local design, and save it to a Verilog file. Compi-
lation and mapping will not be performed, the script should be seen as a template only.
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4.6.16  eASIC eTools

Implementing a GRLIB design on eASIC’s nextreme technology is supported with the eASIC
eTools. Themake etools-initcommand will create and initialize a directory called cdb in the cur-
rent working directory. Themake etools-launchstarts the eTools eX-checker, which reads in the
design and extracts information about PADs and PLLs. After make etools-launch have been exe-
cuted themake etools-wizardcommand can be used to start the eTools eWizard for placement of
PADs and PLLs.

The make targets require that a number of parameters (variables) is set in the makefile. Consult
table 31 for information about these parameters.

Make sure that the architecture of the top entity has a unique name, else the tools will not be able
to identify the top design correctly.

TABLE 30. eASIC eTools make targets

Make target Description

etools-init Creates a cdb directory and initializes its contents.

etools-launch Calls eTools eX checker, which extract PAD and PLL information
from the design.

etools-wizard Launches the eTools eWizard that is used for PAD and PLL placement.

TABLE 31. Makefile parameters

Parameter Description

ETOOLS_TOP_HDL Set to vhdl if the top HDL file is written in VHDL else set it to verilog

ETOOLS_PNC The PNC is provided by eASIC

ETOOLS_DEVICE The device to be targeted

ETOOLS_PACKAG
E

The package to be used for the device

ETOOLS_HOME Path to the eTools installation directory

MAGMA_HOME Path to Magma tools (Set to . if Magma is not available)
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4.7 XGrlib graphical implementation tool

4.7.1  Introduction

XGrlib serves as a graphical front-end to the makefile system described in the previous chapters. It
is written in tcl/tk, using the Visual-tcl (vtcl) GUI builder. XGrlib allows to select which CAD
tools will be used to implement the current design, and how to run them. XGrlib should be started
in a directory with a GRLIB design, usingmake xgrlib . Other make variables can also be set on
the command line, as described earlier:
make xgrlib SYNPLIFY=synplify_pro GRLIB=”../..”

Since XGrlib uses the make utility, it is necessary that all used tools are in the execution path of
the used shell. The tools are divided into three categories: simulation, synthesis and place&route.
All tools can be run in batch mode with the output directed to the XGrlib console, or launched
interactively through each tool’s specific GUI. Below is a figure of the XGrlib main window:

Figure 4. XGrlib main window

4.7.2  Simulation

The simulator type can be selected through the left menu button in the frame marked ‘Simulation’.
There are seven options available: modelsim, ncsim, GHDL, libero, riviera, active-hdl, and active-
hdl batch. Once the simulator has been selected, the design can be compiled by pressing the green
‘Build’ button. The simulator can then be launched interactively by pressing the ‘Run’ button. If
the ‘Batch’ check-button has been set, the ‘Run’ button will run the default test bench in batch
mode with the output displayed in the console frame. The ‘Clean’ button will remove all generated
file for the selected tool.

Note: on windows/cygwin platforms, launching modelsim interactively can fail due to conflict of
cygwin and modelsim tcl/tk libraries. We are trying to resolve this issue.



38

4.7.3  Synthesis

The synthesis tool is selected through the menu button in the frame labeled with ‘Synthesis’. There
are five possibilities: Synplify, Altera Quartus, Xilinx ISE/XST, Mentor Precision and Actel
Libero. The ‘Batch’ check-button defines if synthesis will be run in batch mode or if the selected
tool will be launched interactively. The selected tool is started through the ‘Run’ button.

If a tool is started interactively, is automatically loads a tool-specific project file for the current
design. It is then possible to modify the settings for the project before synthesis is started. Only
one tool should be started at a time to avoid I/O conflicts. The ‘Clean’ button in the ‘Synthesis’
frame will remove all generated file for the selected synthesis tool.

Note that the Libero tool actually performs both simulation, synthesis and place&route. I has been
added to the ‘Synthesis’ menu for convenience.

4.7.4  Place & Route

Place & route is supported for three FPGA tool-chains: Actel Designer, Altera Quartus and Xilinx
ISE. Selecting the tool-chain is done through the menu button in the frame labeled ‘Place &
Route’. Again, the ‘Batch’ check-button controls if the tool-chain will be launched interactively or
run in batch mode. Note that the selection of synthesis tool affects on how place&route is per-
formed. For instance: if synplify has been selected for synthesis and the Xilinx ISE tool is
launched, it will use a project file where the edif netlist from synplify is referenced. If the XST
synthesis tool has been selected instead, the .ngc netlist from XST would have been used.

The ‘Clean’ button in the ‘Place&Route’ frame will remove all generated file for the selected
place&route tool.

4.7.5  Additional functions

Cleaning

The ‘Clean’ button in each of the three tool frames will remove all generated files for selected tool.
This make it possible to for instance clean and rebuild a simulation model without simultaneously
removing a generated netlist. Generated files for all tools will be removed when the ‘clean all’ but-
ton is pressed. This will however not removed compile scripts and project files. To remove these
as well, use the ‘distclean’ button.

Generating compile scripts

The compile scripts and project files are normally automatically generated by the make utility
when needed by a tool. They can also be created directly through the ‘scripts’ button.

Xconfig

If the local design is configured through xconfig (leon3 systems), the xconfig tool can be launched
by pressing the ‘xconfig’ button. The configuration file (config.vhd) is automatically generated if
xconfig is exited by saving the new configuration.

FPGA prom programming

The button ‘PROM prog’ will generate FPGA prom files for the current board, and program the
configuration proms using JTAG. This is currently only supported on Xilinx-based boards. The
configuration prom must be reloaded by the FPGA for the new configuration to take effect. Some
boards has a special reload button, while others must be power-cycled.
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5 GRLIB Design concept

5.1 Introduction

GRLIB is a collection of reusable IP cores, divided on multiple VHDL libraries. Each library pro-
vides components from a particular vendor, or a specific set of shared functions or interfaces. Data
structures and component declarations to be used in a GRLIB-based design are exported through
library specific VHDL packages.

GRLIB is based on the AMBA AHB and APB on-chip buses, which is used as the standard inter-
connect interface. The implementation of the AHB/APB buses is compliant with the AMBA-2.0
specification, with additional ‘sideband’ signals for automatic address decoding, interrupt steering
and device identification (a.k.a. plug&play support). The AHB and APB signals are grouped
according to functionality into VHDL records, declared in the GRLIB VHDL library. The GRLIB
AMBA package source files are located in lib/grlib/amba.

All GRLIB cores use the same data structures to declare the AMBA interfaces, and can then easily
be connected together. An AHB bus controller and an AHB/APB bridge are also available in the
GRLIB library, and allows to assemble quickly a full AHB/APB system.

The following sections will describe how the AMBA buses are implemented and how to develop a
SOC design using GRLIB.

5.2 AMBA AHB on-chip bus

5.2.1  General

The AMBA Advanced High-performance Bus (AHB) is a multi-master bus suitable to intercon-
nect units that are capable of high data rates, and/or variable latency. A conceptual view is pro-
vided in figure 5. The attached units are divided into master and slaves, and controlled by a global
bus arbiter.

Figure 5.AMBA AHB conceptual view

Since the AHB bus is multiplexed (no tristate signals), a more correct view of the bus and the
attached units can be seen in figure 6. Each master drives a set of signals grouped into a VHDL
record called HMSTO. The output record of the current bus master is selected by the bus multi-
plexers and sent to the input record (ahbsi) of all AHB slaves. The output record (ahbso) of the
active slave is selected by the bus multiplexer and forwarded to all masters. A combined bus arbi-
ter, address decoder and bus multiplexer controls which master and slave are currently selected.

MASTER 1 MASTER 2 MASTER 3

BUS
CONTROL

SLAVE 1 SLAVE 2
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Figure 6.AHB inter-connection view

5.2.2  AHB master interface

The AHB master inputs and outputs are defined as VHDL record types, and are exported through
the TYPES package in the GRLIB AMBA library:
-- AHB master inputs
  type ahb_mst_in_type is record
    hgrant  : std_logic_vector(0 to NAHBMST-1);       -- bus grant
    hready  : std_ulogic;                             -- transfer done
hresp   : std_logic_vector(1 downto 0);           -- response type
hrdata  : std_logic_vector(31 downto 0);          -- read data bus

hrdata  : std_logic_vector(31 downto 0);          -- read data bus

hcache  : std_ulogic;                             -- cacheable
    hirq    : std_logic_vector(NAHBIRQ-1 downto 0);   -- interrupt result bus
  end record;

-- AHB master outputs
type ahb_mst_out_type is record
    hbusreq : std_ulogic; -- bus request
    hlock : std_ulogic; -- lock request
    htrans : std_logic_vector(1 downto 0); -- transfer type
    haddr : std_logic_vector(31 downto 0); -- address bus (byte)
    hwrite : std_ulogic; -- read/write
    hsize : std_logic_vector(2 downto 0); -- transfer size
    hburst : std_logic_vector(2 downto 0); -- burst type
    hprot : std_logic_vector(3 downto 0); -- protection control
    hwdata : std_logic_vector(31 downto 0); -- write data bus
    hirq : std_logic_vector(NAHBIRQ-1 downto 0);-- interrupt bus
    hconfig : ahb_config_type; -- memory access reg.
    hindex : integer range 0 to NAHBMST-1; -- diagnostic use only
  end record;

The elements in the record types correspond to the AHB master signals as defined in the AMBA
2.0 specification, with the addition of four sideband signals: HCACHE, HIRQ, HCONFIG and
HINDEX. A typical AHB master in GRLIB has the following definition:

MASTER 1

MASTER 2

MASTER 3

ahbmoO(1)

ahbmi

SLAVE 1

SLAVE 2 ahbso(2)

ahbso(1)ahbmo(2)

ahbmo(3)

BUS ARBITER,
MULTIPLEXER,

& DECODER

ahbsi
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library grlib;
use grlib.amba.all;
library ieee;
use ieee.std_logic.all;

entity ahbmaster is
  generic (
    hindex : integer := 0);           -- master bus index
  port (
    reset   : in  std_ulogic;
    clk     : in  std_ulogic;
    hmsti   : in  ahb_mst_in_type;     -- AHB master inputs
    hmsto   : out ahb_mst_out_type     -- AHB master outputs
  );
end entity;

The input record (HMSTI) is routed to all masters, and includes the bus grant signals for all mas-
ters in the vector HMSTI.HGRANT. An AHB master must therefore use a generic that specifies
which HGRANT element to use. This generic is of type integer, and typically called HINDEX (see
example above).

5.2.3  AHB slave interface

Similar to the AHB master interface, the inputs and outputs of AHB slaves are defined as two
VHDL records types:

-- AHB slave inputs
  type ahb_slv_in_type is record
    hsel      : std_logic_vector(0 to NAHBSLV-1);     -- slave select
    haddr     : std_logic_vector(31 downto 0);        -- address bus (byte)
    hwrite    : std_ulogic;                           -- read/write
    htrans    : std_logic_vector(1 downto 0);         -- transfer type
    hsize     : std_logic_vector(2 downto 0);         -- transfer size
    hburst    : std_logic_vector(2 downto 0);         -- burst type
    hwdata    : std_logic_vector(31 downto 0);        -- write data bus
    hprot     : std_logic_vector(3 downto 0);         -- protection control
    hready    : std_ulogic;                           -- transfer done
    hmaster   : std_logic_vector(3 downto 0);         -- current master
    hmastlock : std_ulogic;                           -- locked access
    hbsel     : std_logic_vector(0 to NAHBCFG-1);     -- bank select
    hcache    : std_ulogic;                           -- cacheable
    hirq      : std_logic_vector(NAHBIRQ-1 downto 0); -- interrupt result bus
  end record;

-- AHB slave outputs

type ahb_slv_out_type is record
    hready : std_ulogic; -- transfer done
    hresp : std_logic_vector(1 downto 0); -- response type
    hrdata : std_logic_vector(31 downto 0); -- read data bus
    hsplit : std_logic_vector(15 downto 0); -- split completion
    hcache : std_ulogic; -- cacheable
    hirq : std_logic_vector(NAHBIRQ-1 downto 0); -- interrupt bus
    hconfig : ahb_config_type; -- memory access reg.
    hindex : integer range 0 to NAHBSLV-1; -- diagnostic use only
  end record;

The elements in the record types correspond to the AHB slaves signals as defined in the AMBA
2.0 specification, with the addition of five sideband signals: HBSEL, HCACHE, HIRQ, HCON-
FIG and HINDEX. A typical AHB slave in GRLIB has the following definition:
library grlib;
use grlib.amba.all;
library ieee;
use ieee.std_logic.all;

entity ahbslave is
  generic (
    hindex : integer := 0);           -- slave bus index
  port (
    reset   : in  std_ulogic;
    clk     : in  std_ulogic;
    hslvi   : in  ahb_slv_in_type;     -- AHB slave inputs
    hslvo   : out ahb_slv_out_type     -- AHB slave outputs
  );
end entity;
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The input record (ahbsi) is routed to all slaves, and include the select signals for all slaves in the
vector ahbsi.hsel. An AHB slave must therefore use a generic that specifies which hsel element to
use. This generic is of type integer, and typically called HINDEX (see example above).

5.2.4  AHB bus control

GRLIB AMBA package provides a combined AHB bus arbiter (ahbctrl), address decoder and bus
multiplexer. It receives the ahbmo and ahbso records from the AHB units, and generates ahbmi
and ahbsi as indicated in figure 6. The bus arbitration function will generate which of the
ahbmi.hgrant elements will be driven to indicate the next bus master. The address decoding func-
tion will drive one of the ahbsi.hsel elements to indicate the selected slave. The bus multiplexer
function will select which master will drive the ahbsi signal, and which slave will drive the ahbmo
signal.

5.2.5  AHB bus index control

The AHB master and slave output records contain the sideband signal HINDEX. This signal is
used to verify that the master or slave is driving the correct element of the ahbso/ahbmo buses. The
generic HINDEX that is used to select the appropriate hgrant and hsel is driven back on
ahbmo.hindex and ahbso.hindex. The AHB controller then checks that the value of the received
HINDEX is equal to the bus index. An error is issued dunring simulation if a missmatch is
detected.

5.2.6  Support for wide AHB data buses

5.2.6.1 Overview

The cores in GRLIB and the GRLIB infrastructure can be configured to support an AMBA AHB
data bus width of 32, 64, 128, or 256 bits. The default AHB bus width is 32 bits and AHB buses
with data vectors having widths over 32 bits will in this section be referred to as wide AHB buses.

Changing the AHB bus width can increase performance, but may also increase the area require-
ments of a design, depending on the synthesis tool used and the type of cores instantiated. Manual
modification of the GRLIB CONFIG package is required to enable support for wide AHB buses.
Alternatively, a local version of the GRLIB CONFIG package can be placed in the current tem-
plate design, overriding the settings in the global GRLIB CONFIG package.

When modifying the system's bus width, care should be taken to verify that all cores have been
instantiated with the correct options with regards to support for wide buses.

Note that the APB bus in GRLIB will always be 32-bits, regardless of the AHB data bus width.

5.2.6.2 Implementation of support for wide AHB buses

To support wide buses, the AHB VHDL records that specify the GRLIB AMBA AHB interface
have their data vector lengths defined by a constant, CFG_AHBDW, defined in the GRLIB CON-
FIG VHDL package.

Using a wide AHB bus places additional requirements on the cores in a design; The cores should
drive the extra positions in the AHB data vector in order to minimize the amount of undriven sig-
nals in the design, and to allow synthesis tool optimisations for cores that do not support AMBA
accesses larger than word accesses. The cores are also required to select and drive the applicable
byte lanes, depending on access size and address.

In order to minimize the amount of undriven signals, all GRLIB AHB cores drive their AHB data
vector outputs via a subprogram,ahbdrivedata(..), defined in the GRLIB AMBA VHDL package.
The subprogram replicates its input so that the whole AHB data vector is driven. Since data is
present on all byte lanes, the use of this function also ensures that data will be present on the cor-
rect byte lanes.
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The AMBA 2.0 Specification requires that cores select their data from the correct byte lane. For
instance, when performing a 32-bit access in a system with a 64-bit wide bus, valid data will be on
positions 63:32 of the data bus if bit 2 of the address is 0, otherwise the valid data will be on posi-
tions 31:0. In order to ease adding support for variable buses, the GRLIB AMBA VHDL package
includes subprograms,ahbread*(...), for reading the AMBA AHB data vectors, hereafter referred
to as AHB read subprograms. These subprograms exists in two variants; The first variant takes an
address argument so that the subprogram is able to select the valid byte lanes of the data vector.
This functionality is not always enabled, as will be explained below. The second variant does not
require the address argument, and always returns the low slice of the AHB data vector.

Currently the majority of the GRLIB AHB cores use the functions without the address argument,
and therefore the cores are only able to read the low part of the data vector. The cores that only
read the low part of the AHB data vector are not fully AMBA 2.0 compatible with regard to wide
buses. However, this does not affect the use of a wide AHB bus in a GRLIB system, since all
GRLIB cores places valid data on the full AHB data vector. As adoption of wide buses become
more widespread, the cores will be updated so that they are able to select the correct byte lanes.

The GRLIB AHB controller core, AHBCTRL, is a central piece of the bus infrastructure. The
AHB controller includes a multiplexer of the width defined by the AMBA VHDL package con-
stant AHBDW. The core also has a generic that decides if the controller should perform additional
AMBA data multiplexing. Data multiplexing is discussed in the next section.

5.2.6.3 AMBA AHB data multiplexing

Almost all GRLIB cores drive valid data on all lanes of the data bus, some exceptions exist, such
as the cores in the AMBA Test Framework). Since theahbdrivedata(..)subprogram duplicates all
data onto the wider bus, all cores will be compliant to the AMBA standard with regards to placing
valid data on the correct lane in the AHB data vector.

As long as there are only GRLIB cores in a design, the cores can support wide AHB buses by only
reading the low slice of the AHB data vectors, which is the case for most cores, as explained in the
section above. However, if a core that only drives the required part of the data vector is introduced
in a design there is a need for support to allow the GRLIB cores to select the valid part of the data.

The current implementation has two ways of accomplishing this:

Set the ACDM generic of AHBCTRL to 1. When this option is enabled the AHB controller will
check the size and address of each access and propagate the valid part of the data on the entire
AHB data bus bus. The smallest portion of the slice to select and duplicate is 32-bits. This means
that valid data for a a byte or halfword access will not be present on all byte lanes, however the
data will be present on all the required byte lanes.

Set the CFG_AHB_ACDM constant to 1 in the GRLIB CONFIG VHDL package. This will make
the AHB read subprograms look at the address and select the correct slice of the incoming data
vector. If a core uses one of the AHB read subprograms that does not have the address argument
there will be a failure asserted. If CFG_AHB_ACDM is 0, the AHB read subprograms will return
the low slice of the data vector. With CFG_AHB_ACDM set to 1, a core that uses the subprograms
with the correct address argument will be fully AMBA compliant and can be used in non-GRLIB
environments with bus widths exceeding 32 bits.

Note that it is unnecessary to enable both of these options in the same system.

5.2.6.4 Modified cores

Several cores in the IP library make use of the wide buses, the list includes cores such as:

• AHB2AHB / AHBBRIDGE

• AHBCTRL

• AHBMON

• AHBRAM

• AMBA Test Framework
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• DDR2SPA  (support for accesses up to 2*ddrbits)

• DDRSPA (support for accesses up to 2*ddrbits)

• L2 Cache

• LEON4

• SDCTRL64

• SPIMCTRL

• SRCTRL

• SVGACTRL

Please consult the core documentation in the GRLIB IP Cores User’s Manual to determine the
state of wide bus support for specific cores. All cores in GRLIB can be used in a system with wide
AHB buses, however they do not all exploit the advantages of a wider bus.

5.2.6.5 GRLIB CONFIG Package

The location of the global GRLIB CONFIG package is in lib/grlib/stdlib/config.vhd. This file con-
tains the settings for the wide buses as described above, and some additional global parameters.
This package can be replaced by a local version by setting the variable GRLIB_CONFIG in the
Makefile of a template design to the location of an alternative version. When the simulation and
synthesis scripts are built, the alternative CONFIG package will be used instead of the global one.
The the variable GRLIB_CONFIG is modified, the scripts have to be re-built for the new value to
take effect.

5.2.6.6 Issues with wide AHB buses

A memory controller may not be able to respond all access sizes. With the current scheme the user
of the system must keep track of which areas that can be accessed with accesses larger then word
accesses. For instance, if SVGACTRL is configured to use 4WORD accesses and the designs has a
DDR2SPA core and a MCTRL core in the system, the SVGACTRL will only receive correct data
if the framebuffer is placed in the DDR2 memory area.

Special care must be taken when using wide buses so that the core specific settings for wider buses
matches the intended use for the cores. Most cores are implemented so that they include support
for handling access sizes up to AHBDW.
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5.3 AHB plug&play configuration

5.3.1  General

The GRLIB implementation of the AHB bus includes a mechanism to provide plug&play support.
The plug&play support consists of three parts: identification of attached units (masters and slaves),
address mapping of slaves, and interrupt routing. The plug&play information for each AHB unit
consists of a configuration record containing eight 32-bit words. The first word is called the identi-
fication register and contains information on the device type and interrupt routing. The last four
words are called bank address registers, and contain address mapping information for AHB slaves.
The remaining three words are currently not assigned and could be used to provide core-specific
configuration information.

Figure 7.AHB plug&play configuration layout

The plug&play information for all attached AHB units appear as a read-only table mapped on a
fixed address of the AHB, typically at 0xFFFFF000. The configuration records of the AHB mas-
ters appear in 0xFFFFF000 - 0xFFFFF800, while the configuration records for the slaves appear in
0xFFFFF800 - 0xFFFFFFFC. Since each record is 8 words (32 bytes), the table has space for 64
masters and 64 slaves. A plug&play operating system (or any other application) can scan the con-
figuration table and automatically detect which units are present on the AHB bus, how they are
configured, and where they are located (slaves).

The configuration record from each AHB unit is sent to the AHB bus controller via the HCONFIG
signal. The bus controller creates the configuration table automatically, and creates a read-only
memory area at the desired address (default 0xFFFFF000). Since the configuration information is
fixed, it can be efficiently implemented as a small ROM or with relatively few gates. A debug mod-
ule (ahbreport) in the WORK.DEBUG package can be used to print the configuration table to the
console during simulation, which is useful for debugging. A typical example is provided below:

VENDOR ID DEVICE ID VERSION IRQ

31 24 23 12 11 5 4 0

31 20 19 16 15 4 3 0

Identification Register 00

10 9

HADDR P MASK TYPEC0 0ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

Bank Address Registers

USER-DEFINED

USER-DEFINED

USER-DEFINED

00

04

08

10

14

18

1C

0C

18 17

BAR0

BAR1

BAR2

BAR3

C = Cacheable

P = Prefetchable TYPE

0010 = AHB Memory space

0011 = AHB I/O space

0001 = APB I/O space
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VSIM 1> run
.
.
# LEON3 Actel PROASIC3-1000 Demonstration design
# GRLIB Version 1.0.16, build 2460
# Target technology: proasic3 ,  memory library: proasic3
# ahbctrl: AHB arbiter/multiplexer rev 1
# ahbctrl: Common I/O area disabled
# ahbctrl: AHB masters: 2, AHB slaves: 8
# ahbctrl: Configuration area at 0xfffff000, 4 kbyte
# ahbctrl: mst0: Gaisler Research        Leon3 SPARC V8 Processor
# ahbctrl: mst1: Gaisler Research        AHB Debug UART
# ahbctrl: slv0: European Space Agency   Leon2 Memory Controller
# ahbctrl:       memory at 0x00000000, size 512 Mbyte, cacheable, prefetch
# ahbctrl:       memory at 0x20000000, size 512 Mbyte
# ahbctrl:       memory at 0x40000000, size 1024 Mbyte, cacheable, prefetch
# ahbctrl: slv1: Gaisler Research        AHB/APB Bridge
# ahbctrl:       memory at 0x80000000, size 1 Mbyte
# ahbctrl: slv2: Gaisler Research        Leon3 Debug Support Unit
# ahbctrl:       memory at 0x90000000, size 256 Mbyte
# apbctrl: APB Bridge at 0x80000000 rev 1
# apbctrl: slv0: European Space Agency   Leon2 Memory Controller
# apbctrl:       I/O ports at 0x80000000, size 256 byte
# apbctrl: slv1: Gaisler Research        Generic UART
# apbctrl:       I/O ports at 0x80000100, size 256 byte
# apbctrl: slv2: Gaisler Research        Multi-processor Interrupt Ctrl.
# apbctrl:       I/O ports at 0x80000200, size 256 byte
# apbctrl: slv3: Gaisler Research        Modular Timer Unit
# apbctrl:       I/O ports at 0x80000300, size 256 byte
# apbctrl: slv7: Gaisler Research        AHB Debug UART
# apbctrl:       I/O ports at 0x80000700, size 256 byte
# apbctrl: slv11: Gaisler Research        General Purpose I/O port
# apbctrl:       I/O ports at 0x80000b00, size 256 byte
# grgpio11: 8-bit GPIO Unit rev 0
# gptimer3: GR Timer Unit rev 0, 8-bit scaler, 2 32-bit timers, irq 8
# irqmp: Multi-processor Interrupt Controller rev 3, #cpu 1
# apbuart1: Generic UART rev 1, fifo 1, irq 2
# ahbuart7: AHB Debug UART rev 0
# dsu3_2: LEON3 Debug support unit + AHB Trace Buffer, 1 kbytes
# leon3_0: LEON3 SPARC V8 processor rev 0
# leon3_0: icache 1*2 kbyte, dcache 1*2 kbyte

5.3.2  Device identification

The Identification Register contains three fields to identify uniquely an attached AHB unit: the
vendor ID, the device ID, and the version number. The vendor ID is a unique number assigned to
an IP vendor or organization. The device ID is a unique number assigned by a vendor to a specific
IP core. The device ID is not related to the core’s functionality. The version number can be used to
identify (functionally) different versions of the unit.

The vendor IDs are declared in a package in each vendor library, usually called DEVICES. Vendor
IDs are provided by Aeroflex Gaisler. The following ID’s are currently assigned:

Vendor ID

Gaisler Research 0x01

Pender Electronic Design 0x02

European Space Agency 0x04

Astrium EADS 0x06

OpenChip.org 0x07

OpenCores.org 0x08

Eonic BV 0x0B

Radionor 0x0F

TABLE 32. Vendor ID assignment
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Vendor ID 0x00 is reserved to indicate that no core is present. Unused slots in the configuration
table will have Identification Register set to 0.

5.3.3  Address decoding

The address mapping of AHB slaves in GRLIB is designed to be distributed, i.e. not rely on a
shared static address decoder which must be modified as soon as a slave is added or removed. The
GRLIB AHB bus controller, which implements the address decoder, will use the configuration
information received from the slaves on HCONFIG to automatically generate the slave select sig-
nals (HSEL). When a slave is added or removed during the design, the address decoding function
is automatically updated without requiring manual editing.

The AHB address range for each slave is defined by its Bank Address Registers (BAR). Address
decoding is performed by comparing the 12-bit ADDR field in the BAR with part of the AHB
address (HADDR). There are two types of banks defined for the AHB bus: AHB memory bank
and AHB I/O bank. The AHB address decoding is done differently for the two types.

For AHB memory banks, the address decoding is performed by comparing the 12-bit ADDR field
in the BAR with the 12 most significant bits in the AHB address (HADDR(31:20)). If equal, the
corresponding HSEL will be generated. This means that the minimum address range occupied by
an AHB memory bank is 1 MByte. To allow for larger address ranges, only the bits set in the
MASK field of the BAR are compared. Consequently, HSEL will be generated when the following
equation is true:
((BAR.ADDR xor HADDR[31:20]) and BAR.MASK) = 0

As an example, to decode a 16 MByte AHB memory bank at address 0x24000000, the ADDR
field should be set to 0x240, and the MASK to 0xFF0. Note: if MASK = 0, the BAR is disabled
rather than occupying the full AHB address range.

For AHB I/O banks, the address decoding is performed by comparing the 12-bit ADDR field in the
BAR with 12 bits in the AHB address (HADDR(19:8)). If equal, the corresponding HSEL will be
generated. This means that the minimum address range occupied by an AHB I/O bank is 256 Byte.
To allow for larger address ranges, only the bits set in the MASK field of the BAR are compared.
Consequently, HSEL will be generated when the following equation is true:
((BAR.ADDR xor HADDR[19:8]) and BAR.MASK) = 0

The 12 most significant bits in the AHB address (HADDR(31:20)) are always fixed to 0xFFF,
effectively placing all AHB I/O banks in the 0xFFF00000-0xFFFFEFFF address space. As an
example, to decode an 4 kByte AHB I/O bank at address 0xFFF24000, the ADDR field should be
set to 0x240, and the MASK to 0xFF0. Note: if MASK = 0, the BAR is disabled rather than occu-
pying the full AHB I/O address range.

Gleichmann Electronics 0x10

Menta 0x11

Sun Microsystems 0x13

Movidia 0x14

Orbita 0x17

Siemens AG 0x1A

Actel Corporation 0xAC

Caltech 0xCA

Embeddit 0xEA

Vendor ID

TABLE 32. Vendor ID assignment
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The AHB slaves in GRLIB define the value of their ADDR and MASK fields through generics.
This allows to choose the address range for each slave when it is instantiated, without having to
modify a central decoder or the slave itself. Below is an example of a component declaration of an
AHB RAM memory, and how it can be instantiated:
component ahbram
  generic (

hindex : integer := 0; -- AHB slave index
    haddr   : integer := 0;
    hmask   : integer := 16#fff#);
  port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;

hslvi : in ahb_slv_in_type; -- AHB slave input
    hslvo   : out ahb_slv_out_type);               -- AHB slave output
end component;

ram0 : ahbram
  generic map (hindex => 1, haddr => 16#240#, hmask => 16#FF0#)
  port map (rst, clk, hslvi, hslvo(1));

An AHB slave can have up to four address mapping registers, thereby decode four independent
areas in the AHB address space. HSEL is asserted when any of the areas is selected. To know
which particular area was selected, the ahbsi record contains the additional bus signal
HBSEL(0:3). The elements in HBSEL(0:3) are asserted if the corresponding to BAR(0-3) caused
HSEL to be asserted. HBSEL is only valid when HSEL is asserted. For example, if BAR1 caused
HSEL to be asserted, the HBSEL(1) will be asserted simultaneously with HSEL.

5.3.4  Cacheability

In processor-based systems without an MMU, the cacheable areas are typically defined statically
in the cache controllers. The LEON3 processor builds the cachebility table automatically during
synthesis, using the cacheability information in the AHB configuration records. In this way, the
cacheability settings always reflect the current configuration.

For systems with an MMU, the cacheability information can be read out by from the configuration
records through software. This allows the operating system to build an MMU page table with
proper cacheable-bits set in the page table entries.

5.3.5  Interrupt steering

GRLIB provides a unified interrupt handling scheme by adding 32 interrupt signals (HIRQ) to the
AHB bus, both as inputs and outputs. An AHB master or slave can drive as well as read any of the
interrupts.

The output of each master includes all 32 interrupt signals in the vector ahbmo.hirq. An AHB mas-
ter must therefore use a generic that specifies which HIRQ element to drive. This generic is of type
integer, and typically called HIRQ (see example below).
component ahbmaster is
  generic (
    hindex : integer := 0;            -- master index
    hirq : integer := 0);           -- interrupt index
  port (
    reset   : in  std_ulogic;
    clk     : in  std_ulogic;
    hmsti   : in  ahb_mst_in_type;     -- AHB master inputs
    hmsto   : out ahb_mst_out_type     -- AHB master outputs
  );
end component;

master1 : ahbmaster
  generic map (hindex => 1, hirq => 1)
  port map (rst, clk, hmsti, hmsto(1));

The same applies to the output of each slave which includes all 32 interrupt signals in the vector
ahbso.hirq. An AHB slave must therefore use a generic that specifies which HIRQ element to
drive. This generic is of type integer, and typically called HIRQ (see example below).
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component ahbslave
  generic (
    hindex : integer := 0;            -- slave index
    hirq : integer := 0);           -- interrupt index
  port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;
    hslvi   : in  ahb_slv_in_type;     -- AHB slave inputs
    hslvo   : out ahb_slv_out_type);   -- AHB slave outputs
end component;

slave2 : ahbslave
  generic map (hindex => 2, hirq => 2)
  port map (rst, clk, hslvi, hslvo(1));

The AHB bus controller in the GRLIB provides interrupt combining. For each element in HIRQ,
all the ahbmo.hirq signals from the AHB masters and all the ahbso.hirq signals from the AHB
slaves are logically OR-ed. The combined result is output both on ahbmi.hirq (routed back to the
AHB masters) and ahbsi.hirq (routed back to the AHB slaves). Consequently, the AHB masters
and slaves share the same 32 interrupt signals.

An AHB unit that implements an interrupt controller can monitor the combined interrupt vector
(either ahbsi.hirq or ahbmi.hirq) and generate the appropriate processor interrupt.
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5.4 AMBA APB on-chip bus

5.4.1  General

The AMBA Advanced Peripheral Bus (APB) is a single-master bus suitable to interconnect units
of low complexity which require only low data rates. An APB bus is interfaced with an AHB bus
by means of a single AHB slave implementing the AHB/APB bridge. The AHB/APB bridge is the
only APB master on one specific APB bus. More than one APB bus can be connected to one AHB
bus, by means of multiple AHB/APB bridges. A conceptual view is provided in figure 8.

Figure 8.AMBA AHB/APB conceptual view

Since the APB bus is multiplexed (no tristate signals), a more correct view of the bus and the
attached units can be seen in figure 9. The access to the AHB slave input (AHBI) is decoded and
an access is made on APB bus. The APB master drives a set of signals grouped into a VHDL
record called APBI which is sent to all APB slaves. The combined address decoder and bus multi-
plexer controls which slave is currently selected. The output record (APBO) of the active APB
slave is selected by the bus multiplexer and forwarded to AHB slave output (AHBO).

AHB MASTER 1 AHB MASTER 2 AHB MASTER 3

AHB BUS
CONTROL
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APB MASTER
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Figure 9.APB inter-connection view

5.4.2  APB slave interface

The APB slave inputs and outputs are defined as VHDL record types, and are exported through the
TYPES package in the GRLIB AMBA library:
-- APB slave inputs
  type apb_slv_in_type is record
    psel    : std_logic_vector(0 to NAPBSLV-1);       -- slave select
    penable : std_ulogic;                             -- strobe
    paddr   : std_logic_vector(31 downto 0);          -- address bus (byte)
    pwrite  : std_ulogic;                             -- write
    pwdata  : std_logic_vector(31 downto 0);          -- write data bus
    pirq    : std_logic_vector(NAHBIRQ-1 downto 0);   -- interrupt result bus
  end record;

-- APB slave outputs
type apb_slv_out_type is record

    prdata : std_logic_vector(31 downto 0); -- read data bus
    pirq : std_logic_vector(NAHBIRQ-1 downto 0); -- interrupt bus
    pconfig : apb_config_type; -- memory access reg.
    pindex : integer range 0 to NAPBSLV -1; -- diag use only
  end record;

The elements in the record types correspond to the APB signals as defined in the AMBA 2.0 spec-
ification, with the addition of three sideband signals: PCONFIG, PIRQ and PINDEX. A typical
APB slave in GRLIB has the following definition:
library grlib;
use grlib.amba.all;
library ieee;
use ieee.std_logic.all;

entity apbslave is
  generic (
    pindex  : integer := 0);           -- slave bus index
  port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;
    apbi    : in  apb_slv_in_type;     -- APB slave inputs
    apbo    : out apb_slv_out_type     -- APB slave outputs
  );
end entity;
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AHBO
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SLAVE 2 APBO(2)

APBO(1)
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The input record (APBI) is routed to all slaves, and include the select signals for all slaves in the
vector APBI.PSEL. An APB slave must therefore use a generic that specifies which PSEL element
to use. This generic is of type integer, and typically called PINDEX (see example above).

5.4.3  AHB/APB bridge

GRLIB provides a combined AHB slave, APB bus master, address decoder and bus multiplexer. It
receives the AHBI and AHBO records from the AHB bus, and generates APBI and APBO records
on the APB bus. The address decoding function will drive one of the APBI.PSEL elements to indi-
cate the selected APB slave. The bus multiplexer function will select from which APB slave data
will be taken to drive the AHBI signal. A typical APB master in GRLIB has the following defini-
tion:
library IEEE;
use IEEE.std_logic_1164.all;
library grlib;
use grlib.amba.all;

entity apbmst is
  generic (

hindex  : integer := 0;            -- AHB slave bus index
  );
  port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;
    ahbi    : in  ahb_slv_in_type;     -- AHB slave inputs
    ahbo    : out ahb_slv_out_type;    -- AHB slave outputs
    apbi    : out apb_slv_in_type;     -- APB master inputs
    apbo    : in  apb_slv_out_vector   -- APB master outputs
  );
end;

5.4.4  APB bus index control

The APB slave output records contain the sideband signal PINDEX. This signal is used to verify
that the slave is driving the correct element of the AHBPO bus. The generic PINDEX that is used
to select the appropriate PSEL is driven back on APBO.PINDEX. The APB controller then checks
that the value of the received PINDEX is equal to the bus index. An error is issued during simula-
tion if a mismatch is detected.
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5.5 APB plug&play configuration

5.5.1  General

The GRLIB implementation of the APB bus includes the same type of mechanism to provide
plug&play support as for the AHB bus. The plug&play support consists of three parts: identifica-
tion of attached slaves, address mapping, and interrupt routing. The plug&play information for
each APB slave consists of a configuration record containing two 32-bit words. The first word is
called the identification register and contains information on the device type and interrupt routing.
The last word is the bank address register (BAR) and contains address mapping information for the
APB slave. Only a single BAR is defined per APB slave. An APB slave is neither prefetchable nor
cacheable.

Figure 10.APB plug&play configuration layout

All addressing of the APB is referenced to the AHB address space. The 12 most significant bits of
the AHB bus address are used for addressing the AHB slave of the AHB/APB bridge, leaving the
20 least significant bits for APB slave addressing.

The plug&play information for all attached APB slaves appear as a read-only table mapped on a
fixed address of the AHB, typically at 0x---FF000. The configuration records of the APB slaves
appear in 0x---FF000 - 0x---FFFFF on the AHB bus. Since each record is 2 words (8 bytes), the
table has space for 512 slaves on a signle APB bus. A plug&play operating system (or any other
application) can scan the configuration table and automatically detect which units are present on
the APB bus, how they are configured, and where they are located (slaves).

The configuration record from each APB unit is sent to the APB bus controller via the PCONFIG
signal. The bus controller creates the configuration table automatically, and creates a read-only
memory area at the desired address (default 0x---FF000). Since the configuration information is
fixed, it can be efficiently implemented as a small ROM or with relatively few gates. A special
reporting module (apbreport) is provided in the WORK.DEBUG package of Grlib which can be
used to print the configuration table to the console during simulation.

5.5.2  Device identification

The APB bus uses same type of Identification Register as previously defined for the AHB bus.

5.5.3  Address decoding

The address mapping of APB slaves in GRLIB is designed to be distributed, i.e. not rely on a
shared static address decoder which must be modified as soon as a slave is added or removed. The
GRLIB APB master, which implements the address decoder, will use the configuration informa-
tion received from the slaves on PCONFIG to automatically generate the slave select signals
(PSEL). When a slave is added or removed during the design, the address decoding function is
automatically updated without requiring manual editing.

The APB address range for each slave is defined by its Bank Address Registers (BAR). There is
one type of banks defined for the APB bus: APB I/O bank. Address decoding is performed by
comparing the 12-bit ADDR field in the BAR with 12 bits in the AHB address (HADDR(19:8)). If
equal, the corresponding PSEL will be generated. This means that the minimum address range
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occupied by an APB I/O bank is 256 Byte. To allow for larger address ranges, only the bits set in
the MASK field of the BAR are compared. Consequently, PSEL will be generated when the fol-
lowing equation is true:
((BAR.ADDR xor HADDR[19:8]) and BAR.MASK) = 0

As an example, to decode an 4 kByte AHB I/O bank at address 0x---24000, the ADDR field
should be set to 0x240, and the MASK to 0xFF0. Note that the 12 most significant bits of
AHBI.HADDR are used for addressing the AHB slave of the AHB/APB bridge, leaving the 20
least significant bits for APB slave addressing.

As for AHB slaves, the APB slaves in GRLIB define the value of their ADDR and MASK fields
through generics. This allows to choose the address range for each slave when it is instantiated,
without having to modify a central decoder or the slave itself. Below is an example of a component
declaration of an APB I/O unit, and how it can be instantiated:
component apbio
  generic (

pindex : integer := 0;
paddr : integer := 0;
pmask : integer := 16#fff#);

  port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;
    apbi : in  apb_slv_in_type;
    apbo : out apb_slv_out_type);
end component;

io0 : apbio
  generic map (pindex => 1, paddr => 16#240#, pmask => 16#FF0#)
  port map (rst, clk, apbi, apbo(1));

5.5.4  Interrupt steering

GRLIB provides a unified interrupt handling scheme by also adding 32 interrupt signals (PIRQ) to
the APB bus, both as inputs and outputs. An APB slave can drive as well as read any of the inter-
rupts. The output of each slave includes all 32 interrupt signals in the vector APBO.PIRQ. An
APB slave must therefore use a generic that specifies which PIRQ element to drive. This generic is
of type integer, and typically called PIRQ (see example below).
component apbslave
  generic (

pindex : integer := 0;            -- slave index
    pirq : integer := 0);           -- interrupt index
  port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;
    apbi  : in  apb_slv_in_type;     -- APB slave inputs
    apbo : out apb_slv_out_type);   -- APB slave outputs
end component;

slave3 : apbslave
  generic map (pindex => 1, pirq => 2)
  port map (rst, clk, pslvi, pslvo(1));

The AHB/APB bridge in the GRLIB provides interrupt combining, and merges the APB-generated
interrupts with the interrups bus on the AHB bus. This is done by OR-ing the 32-bit interrupt vec-
tors from each APB slave into one joined vector, and driving the combined value on the AHB slave
output bus (AHBSO.HIRQ). The APB interrupts will then be merged with the AHB interrupts.
The resulting interrupt vector in available on the AHB slave input (AHBSI.HIRQ), and is also
driven on the APB slave inputs (APBI.PIRQ) by the AHB/APB bridge. Each APB slave (as well as
AHB slave) thus sees the combined AHB/APB interrupts. An interrupt controller can then be
placed either on the AHB or APB bus and still monitor all interrupts.
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5.6 Technology mapping

5.6.1  General

GRLIB provides portability support for both ASIC and FPGA technologies. The support is imple-
mented by means of encapsulation of technology specific components such as memories, pads and
clock buffers. The interface to the encapsulated component is made technology independent, not
relying on any specific VHDL or Verilog code provided by the foundry or FPGA manufacturer.
The interface to the component stays therefore always the same. No modification of the design is
therefore required if a different technology is targeted. The following technologies are currently
supported by the TECHMAP.GENCOMP package:
constant inferred    : integer := 0;
constant virtex      : integer := 1;
constant virtex2     : integer := 2;
constant memvirage   : integer := 3;
constant axcel       : integer := 4;
constant proasic     : integer := 5;
constant atc18s      : integer := 6;
constant altera      : integer := 7;
constant umc         : integer := 8;
constant rhumc       : integer := 9;
constant apa3        : integer := 10;
constant spartan3    : integer := 11;
constant ihp25       : integer := 12;
constant rhlib18t    : integer := 13;
constant virtex4     : integer := 14;
constant lattice     : integer := 15;
constant ut25        : integer := 16;
constant spartan3e   : integer := 17;
constant peregrine   : integer := 18;
constant memartisan  : integer := 19;
constant virtex5     : integer := 20;
constant custom1     : integer := 21;
constant ihp25rh     : integer := 22;
constant stratix1    : integer := 23;
constant stratix2    : integer := 24;
constant eclipse     : integer := 25;
constant stratix3    : integer := 26;
constant cyclone3    : integer := 27;
constant memvirage90 : integer := 28;
constant tsmc90      : integer := 29;
constant easic90     : integer := 30;
constant atc18rha    : integer := 31;
constant smic013     : integer := 32;
constant tm65gpl     : integer := 33;
constant axdsp       : integer := 34;
constant spartan6    : integer := 35;
constant virtex6     : integer := 36;
constant actfus      : integer := 37;

Each encapsulating component provides a VHDL generic (normally named TECH) with which the
targeted technology can be selected. The generic is used by the component to select the correct
technology specific cells to instantiatein its architecture and to configure them approriately. This
method does not rely on the synthesis tool to inferring the correct cells.

For technologies not defined in GRLIB, the default “inferred” option can be used. This option
relies on the synthesis tool to infer the correct technology cells for the targeted device.

A second VHDL generic (normally named MEMTECH) is used for selecting the memory cell
technology. This is useful for ASIC technologies where the pads are provided by the foundry and
the memory cells are provided by a different source. For memory cells, generics are also used to
specify the address and data widths, and the number of ports.

The two generics TECH and MEMTECH should be defined at the top level entity of a design and
be propagated to all underlying components supporting technology specific implementations.

5.6.2  Memory blocks

Memory blocks are often implemented with technology specific cells or macrocells and require an
encapsulating component to offer a unified technology independent interface. The TECHMAP
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library provides such technology independent memory component, as the synchronous single-port
RAM shown in the following code example. The address and data widths are fully configurable by
means of the generics ABITS and DBITS, respectively.
component syncram
  generic (
    memtech : integer := 0;                          -- memory technology
    abits    : integer := 6;                          -- address width
    dbits    : integer := 8);                         -- data width
  port (
    clk      : in  std_ulogic;
    address  : in  std_logic_vector((abits -1) downto 0);
    datain   : in  std_logic_vector((dbits -1) downto 0);
    dataout  : out std_logic_vector((dbits -1) downto 0);
    enable   : in  std_ulogic;
    write    : in  std_ulogic);
end component;

This synchronous single-port RAM component is used in the AHB RAM component shown in the
following code example.
component ahbram
  generic (
    hindex : integer := 0;                         -- AHB slave index
    haddr   : integer := 0;
    hmask   : integer := 16#fff#;
    memtech : integer := 0;                         -- memory technology
    kbytes  : integer := 1);                        -- memory size
  port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;
    hslvi   : in  ahb_slv_in_type;                  -- AHB slave input
    hslvo   : out ahb_slv_out_type);                -- AHB slave output
end component;

ram0 : ahbram
  generic map (hindex => 1, haddr => 16#240#, hmask => 16#FF0#,
               tech => virtex, kbytes => 4)
  port map (rst, clk, hslvi, hslvo(1));

In addition to the selection of technology (VIRTEX in this case), the size of the AHB RAM is
specified in number of kilo-bytes. The conversion from kilo-bytes to the number of address bits is
performed automatically in the AHB RAM component. In this example, the data width is fixed to
32 bits and requires no generic. The VIRTEX constant used in this example is defined in the
TECHMAP.GENCOMP package.

5.6.3  Pads

As for memory cells, the pads used in a design are always technology dependent. The TECHMAP
library provides a set of encapsulated components that hide all the technology specific details from
the user. In addition to the VHDL generic used for selecting the technology (normally named
TECH), generics are provided for specifying the input/output technology levels, voltage levels,
slew and driving strength. A typical open-drain output pad is shown in the following code exam-
ple:

component odpad
  generic (
    tech     : integer := 0;
    level    : integer := 0;
    slew     : integer := 0;
    voltage  : integer := 0;
    strength : integer := 0

);
  port (
    pad      : out std_ulogic;

o : in std_ulogic
);

end component;

pad0 : odpad
  generic map (tech => virtex, level => pci33, voltage => x33v)
  port map (pad => pci_irq, o => irqn);
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The TECHMAP.GENCOMP package defines the following constants that to be used for configur-
ing pads:
-- input/output voltage

constant x18v      : integer := 1;
constant x25v      : integer := 2;
constant x33v      : integer := 3;
constant x50v      : integer := 5;

-- input/output levels

constant ttl      : integer := 0;
constant cmos     : integer := 1;
constant pci33    : integer := 2;
constant pci66    : integer := 3;
constant lvds     : integer := 4;
constant sstl2_i  : integer := 5;
constant sstl2_ii : integer := 6;
constant sstl3_i  : integer := 7;
constant sstl3_ii : integer := 8;

-- pad types

constant normal   : integer := 0;
constant pullup   : integer := 1;
constant pulldown : integer := 2;
constant opendrain: integer := 3;
constant schmitt  : integer := 4;
constant dci      : integer := 5;

The slew control and driving strength is not supported by all target technologies, or is often imple-
mented differently between different technologie. The documentation for the IP core implement-
ing the pad should be consulted for details.

5.7 Scan test support

To support scan test methods, the GRLIB AHB and APB bus records include four extra signals:
testen (test enable), scanen (scan enable), testoen (bidir control) and testrst (test reset). Scan meth-
odology requires that all flip-flops are controllable in test mode, i.e. that they are connected to the
same clock and that asynchronous resets are connected to the test reset signal. Bi-directionla or tri-
state outputs should also be controllable. The four test signals are driven from the AHB bus con-
troller (ahbctrl), where they are defined as optional inputs. The test signals are the routed to the
inputs of all AHB masters and slaves (ahbmi and ahbsi records). The APB master (apbctrl) routes
the test signals further to all APB slaves using the apbi record. In this way, the scan test control sig-
nals are available in all AMBA cores without additional external connections.

Cores which use the scan signals include LEON3, MCTRL and GRGPIO.
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6 GRLIB Design examples

6.1 Introduction

The template design examples described in the following sections are provided for the understand-
ing of how to integrate the existing GRLIB IP cores into a design. The documentation for the vari-
ous IP cores should be consulted for details.

6.2 NetCard

The NetCard design example described in this section is a simple PCI to Ethernet bridge. The
design is based on IP cores from GRLIB, including the GRPCI PCI bridge and the GRETH Ether-
net MAC. The VHDL code of the design is listed in its full hereafter, but has been split into sec-
tions to allow for explanations after the source code. The design is located in grlib/designs/netcard.
library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all; -- AMBA AHB/APB components
library techmap;
use techmap.gencomp.all; -- technology
use grlib.stdlib.all; -- utilities
library gaisler;
use gaisler.uart.all; -- AMBA AHB/APB UARTs
use gaisler.misc.all; -- miscellaneous
use gaisler.pci.all; -- PCI
use gaisler.net.all; -- network cores
use work.config.all; -- design configuration

The GRLIB and GAISLER VHDL libraries are used for this design. Only the most important
packages are explained. The AHB bus controller and the AHB/APB bridge components are
defined in the GRLIB.AMBA package. The technology selection is defined in the TECH-
MAP.GENCOMP package.
entity netcard is
  generic (

fabtech   : integer := CFG_FABTECH;
    memtech   : integer := CFG_MEMTECH;
    padtech   : integer := CFG_PADTECH;
    clktech   : integer := CFG_CLKTECH
  );

The TECH and MEMTECH generics are used for selecting the overall technology and the mem-
ory technology. It is possible to include optionally a debugger and a PCI signal tracer. It is possible
to select the functionality of the PCI bridge, either as target only or as combined initiator/target.
port (
    resetn     : in    std_ulogic;
    clk        : in    std_ulogic;

    dsutx      : out   std_ulogic;                    -- DSU tx data
    dsurx      : in    std_ulogic;                    -- DSU rx data

    emdio      : inout std_logic;                     -- ethernet
    etx_clk    : in    std_logic;
    erx_clk    : in    std_logic;
    erxd       : in    std_logic_vector(3 downto 0);
    erx_dv     : in    std_logic;
    erx_er     : in    std_logic;
    erx_col    : in    std_logic;
    erx_crs    : in    std_logic;
    etxd       : out   std_logic_vector(3 downto 0);
    etx_en     : out   std_logic;
    etx_er     : out   std_logic;
    emdc       : out   std_logic;

    pci_rst    : in    std_ulogic;                    -- PCI
    pci_clk    : in    std_ulogic;
    pci_gnt    : in    std_ulogic;
    pci_idsel  : in    std_ulogic;
    pci_lock   : inout std_ulogic;
    pci_ad     : inout std_logic_vector(31 downto 0);
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    pci_cbe    : inout std_logic_vector(3 downto 0);
    pci_frame  : inout std_ulogic;
    pci_irdy   : inout std_ulogic;
    pci_trdy   : inout std_ulogic;
    pci_devsel : inout std_ulogic;
    pci_stop   : inout std_ulogic;
    pci_perr   : inout std_ulogic;
    pci_par    : inout std_ulogic;
    pci_req    : inout std_ulogic;
    pci_serr   : inout std_ulogic;
    pci_irq    : out   std_ulogic;
    pci_host   : in    std_ulogic;
    pci_66     : in    std_ulogic);
end;

The interface ports of the design are all defined as standard IEEE 1164 types.
architecture rtl of netcard is

signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);

Local signal declarations for the APB slave inputs and outputs. The outputs are contained in a vec-
tor and each APB slave drives it own element. Note that a default value is given to the APB output
vector in the architecture declarative part. This is generally not supported for synthesis, but all syn-
thesis tools supported by GRLIB generate all-zero values which makes the outcome determistic. If
this design style is not accepted by a tool or user, the unused entries in the vector should be
assigned the default value explicitly in the architecture statement part.

signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => ahbs_none);

Local signal declarations for the AHB slave inputs and outputs. The outputs are contained in a vec-
tor, and each AHB slave drives it own element.

signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

Local signal declarations for the AHB masters inputs and outputs. The outputs are contained in a
vector, and each AHB masters drives it own element.

signal clkm, rstn, pciclk : std_ulogic;
  signal cgi   : clkgen_in_type;
  signal cgo   : clkgen_out_type;

signal dui   : uart_in_type;
  signal duo   : uart_out_type;

signal pcii  : pci_in_type;
  signal pcio  : pci_out_type;

signal ethi  : eth_in_type;
  signal etho  : eth_out_type;

signal irqn  : std_logic;

The rest of the local signal declarations are used for the clock generation, debugger, PCI and
Ethernet interfaces.
begin

----------------------------------------------------------------------
---  Reset and Clock generation  -------------------------------------
----------------------------------------------------------------------

cgi.pllctrl <= "00";
cgi.pllrst <= resetn;
cgi.pllref  <= '0';

clkgen0 : clkgen      -- clock generator
generic map (clk_mul => 4, clk_div => 2, pcien => pci, tech => tech)
port map (clk, pci_clk, clkm, open, open, open, pciclk, cgi, cgo);

rst0 : rstgen         -- reset generator
port map (resetn, clkm, cgo.clklock, rstn);

The clock generator can be implemented using technology specific cells, which is controlled by
the CLKTECH generic.
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----------------------------------------------------------------------
---  AHB CONTROLLER --------------------------------------------------
----------------------------------------------------------------------

ahb0 : ahbctrl        -- AHB arbiter/multiplexer
    port map (rstn, clkm, ahbmi, ahbmo, ahbsi, ahbso);

The GRLIB GAISLER AHB bus controller is used for implementing the AHB arbiter, address
decoder and multiplexer. All AHB master and slave inputs/outputs are route through the controller.
-----------------------------------------------------------------------
---  ETHERNET ---------------------------------------------------------
-----------------------------------------------------------------------
e0 : greth generic map(hindex => log2x(CFG_PCI),

pindex => 0, paddr => 11, pirq => 11, memtech => memtech)
     port map( rst => rstn, clk => clk, ahbmi => ahbmi, ahbmo => ahbmo(log2x(CFG_PCI)),

apbi => apbi, apbo => apbo(0), ethi => ethi, etho => etho);

The GRETH Ethernet interface is an AHB master and an APB slave. The generic hindex defines
its AHB master number and the generic pindex defines its APB slave index. Note that hindex and
the index used for selecting the correct element in the AHBMO vector must be the same. The same
applies to pindex and apbo.. The two indices have no relation to the address mapping of the slave.
The address of the APB bank is specified by the paddr generic, and in this case its starting address
will be 0x80000B00. The IRQ generic specifies that the device will generate interrupts on interrupt
vector element 11.

emdio_pad : iopad generic map (tech => padtech)
      port map (emdio, etho.mdio_o, etho.mdio_oe, ethi.mdio_i);
      etxc_pad : clkpad generic map (tech => padtech, arch => 1)

port map (etx_clk, ethi.tx_clk);
      erxc_pad : clkpad generic map (tech => padtech, arch => 1)

port map (erx_clk, ethi.rx_clk);
      erxd_pad : inpadv generic map (tech => padtech, width => 4)

port map (erxd, ethi.rxd(3 downto 0));
      erxdv_pad : inpad generic map (tech => padtech)

port map (erx_dv, ethi.rx_dv);
      erxer_pad : inpad generic map (tech => padtech)

port map (erx_er, ethi.rx_er);
      erxco_pad : inpad generic map (tech => padtech)

port map (erx_col, ethi.rx_col);
      erxcr_pad : inpad generic map (tech => padtech)

port map (erx_crs, ethi.rx_crs);

      etxd_pad : outpadv generic map (tech => padtech, width => 4)
port map (etxd, etho.txd(3 downto 0));

      etxen_pad : outpad generic map (tech => padtech)
port map ( etx_en, etho.tx_en);

      etxer_pad : outpad generic map (tech => padtech)
port map (etx_er, etho.tx_er);

      emdc_pad : outpad generic map (tech => padtech)
port map (emdc, etho.mdc);

irqn        <= ahbso(3).hirq(11);

  irq_pad : odpad generic map (tech => padtech, level => pci33)
  port map (pci_irq, irqn);

All Ethernet interface signals are mapped pads with tech mapping, selecting the appropriate pads
for the selected target technology. A pad is explicitly instantiated for the interrupt output, ensuring
that an open-drain output with PCI33 levels is being used.
----------------------------------------------------------------------
---  AHB/APB Bridge  -------------------------------------------------
----------------------------------------------------------------------

apb0 : apbctrl -- AHB/APB bridge
    generic map (hindex => 0, haddr => 16#800#)
    port map (rstn, clkm, ahbsi, ahbso(0), apbi, apbo );

The GRLIB AHB/APB bridge is instantiated as a slave on the AHB bus. The HINDEX generic
specifies its index on the AHB slave bus, and the HADDR generic specifies that the corresponding
APB bus address area will be starting from AHB address 0x80000000.
----------------------------------------------------------------------
---  AHB RAM  --------------------------------------------------------
----------------------------------------------------------------------

ram0 : ahbram
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    generic map (hindex => 2, haddr => 0, hmask => 16#FFF#,
                 tech => memtech, kbytes => 8)
    port map (rstn, clkm, ahbsi, ahbso(2));

A local RAM is implemented as a slave on the AHB bus. The technology selection is made with
the MEMTECH generic. The size is specified to be 8 kbytes with the KBYTES generic, and the
memory is located at address 0x00000000 as specified by HADDR. The HMASK generic allo-
cates a minimum 1 Mbyte address space on the AHB bus.
-----------------------------------------------------------------------
---  PCI   ------------------------------------------------------------
-----------------------------------------------------------------------

pp : if pci /= 0 generate
    pci_gr0 : if pci = 1 generate
      pci0 : pci_target
        generic map (hindex => 0,
                     device_id => 16#0210#, vendor_id => 16#16E3#)
        port map (rstn, clkm, pciclk, pcii, pcio, ahbmi, ahbmo(0));
    end generate;
    pci_mtf0 : if pci = 2 generate
      pci0 : pci_mtf
        generic map (memtech => memtech, hmstndx => 0,
                     fifodepth => 6, device_id => 16#0210#,
                     vendor_id => 16#16E3#, hslvndx => 1,
                     pindex => 6, paddr => 2, haddr => 16#E00#,
                     ioaddr => 16#400#, nsync => 2)
        port map (rstn, clkm, pciclk, pcii, pcio, apbi, apbo(2),
                  ahbmi, ahbmo(0), ahbsi, ahbso(1));
    end generate;
    pci_trc0 : if pcitrc /= 0 generate
      pt0 : pcitrace
        generic map (memtech => memtech, pindex => 3,
                     paddr => 16#100#, pmask => 16#f00#)
        port map (rstn, clkm, pciclk, pcii, apbi, apbo(3));
    end generate;
    pcipads0 : pcipads
      generic map (tech)
      port map (pci_rst, pci_gnt, pci_idsel, pci_lock, pci_ad, pci_cbe,
                pci_frame, pci_irdy, pci_trdy, pci_devsel, pci_stop,
                pci_perr, pci_par, pci_req, pci_serr, pci_host, pci_66,
                pcii, pcio);
  end generate;

If the PCI interface is implemented as a target only, the device is only implemented as a master on
AHB. This option does not require any on-chip memory and no technology selection is required.
The PCI device and vendor ID is specified by means of generics.

For an initiator/target PCI interface, the device is implemented as both master and slave on AHB.
This option implements on-chip memory for which the technology is selected with the
MEMTECH generic. The size of the memory is selected with the FIFODEPTH generic and it is
located at 0xE0000000 as specified by HADDR. The I/O bank of the device is located at AHB
address 0x40000000. This option also implements a APB slave, and the PINDEX generic is used
for specifying its APB bus number.

Not shown in this example is that there are several other generics specified for the PCI IP cores for
which default values are being used. What should be noted is that most of the generics are hard
coded in this example, not allowing the design to be changed by means of top level entity generics.

The pads for the PCI interface are implemented in the PCIPADS component, which only uses the
TECH generic since the signal levels are already determined.

As an option, a PCI signal trace buffer can be included in the design. The trace buffer samples PCI
signal activity and stores the data in a local on-chip memory. The trace buffer is accessible as an
APB slave I/O bank of 4 kBytes at AHB address 0x80010000 as specified by the PADDR and
PMASK generics. The 0x800 part of the address is specified by the AHB/APB bridge HADDR
generic as explained above.
----------------------------------------------------------------------
---  Optional DSU UART -----------------------------------------------
----------------------------------------------------------------------

dcomgen : if dbg = 1 generate
    dcom0: ahbuart   -- Debug UART
      generic map (ahbndx => 2, apbndx => 1, apbaddr => 1)
      port map (rstn, clkm, dui, duo, apbi, apbo(1), ahbmi, ahbmo(2));
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                dui.rxd <= dsurx; dsutx <= duo.txd;
  end generate;

An option debug support unit serial interface can be included in the design. The DSU acts as an
AHB master and as an APB slave.
-----------------------------------------------------------------------
---  Boot message  ----------------------------------------------------
-----------------------------------------------------------------------
-- pragma translate_off

  apbrep : apbreport -- APB reporting module
  generic map (haddr => 16#800#)
  port map (apbo);

  ahbrep : ahbreport -- AHB reporting module
  port map (ahbmo, ahbso);

  x : report_version
  generic map (
   msg1 => "Network Card Demonstration design",
   msg2 => "GRLIB Version " & tost(LIBVHDL_VERSION/100) &
                        "." & tost(LIBVHDL_VERSION mod 100),
   msg3 => "Target technology: " & tech_table(tech) &
           ",  memory library: " & tech_table(memtech),
   mdel => 1
  );
-- pragma translate_on
end;

Finally, a component is added to the design which generates a report during simulation regarding
the GRLIB version and technology selections. The component is not included in synthesis, a indi-
cated by the pragma usage.

To simulate the default design, move to the grlib/designs/netcard directory and execute the ‘vsim’
command.
$ vsim -c netcard

Simulate the first 100 ns by writing ‘run’.
# Ethernet/PCI Network Card Demonstration design
# GRLIB Version 1.0.15, build 2194
# Target technology: virtex2  ,  memory library: virtex2
# ahbctrl: AHB arbiter/multiplexer rev 1
# ahbctrl: Common I/O area disabled
# ahbctrl: AHB masters: 3, AHB slaves: 4
# ahbctrl: Configuration area at 0xfffff000, 4 kbyte
# ahbctrl: mst0: Gaisler Research        Fast 32-bit PCI Bridge
# ahbctrl: mst1: Gaisler Research        GR Ethernet MAC
# ahbctrl: mst2: Gaisler Research        AHB Debug UART
# ahbctrl: slv0: Gaisler Research        AHB/APB Bridge
# ahbctrl:       memory at 0x80000000, size 1 Mbyte
# ahbctrl: slv1: Gaisler Research        Fast 32-bit PCI Bridge
# ahbctrl:       memory at 0xe0000000, size 256 Mbyte
# apbctrl: APB Bridge at 0x80000000 rev 1
# apbctrl: slv0: Gaisler Research        GR Ethernet MAC
# apbctrl:       I/O ports at 0x80000b00, size 256 byte
# apbctrl: slv1: Gaisler Research        AHB Debug UART
# apbctrl:       I/O ports at 0x80000100, size 256 byte
# apbctrl: slv3: Gaisler Research        32-bit PCI Trace Buffer
# apbctrl:       I/O ports at 0x80010000, size 64 kbyte
# apbctrl: slv6: Gaisler Research        Fast 32-bit PCI Bridge
# apbctrl:       I/O ports at 0x80000200, size 256 byte
# ahbuart1: AHB Debug UART rev 0
# pci_mtf1: 32-bit PCI/AHB bridge  rev 0, 2 Mbyte PCI memory BAR, 64-word FIFOs
# greth1: 10/100 Mbit Ethernet MAC rev 01, EDCL 0, buffer 0 kbyte 8 txfifo
# clkgen_virtex2: virtex-2 sdram/pci clock generator, version 1
# clkgen_virtex2: Frequency 25000 KHz, DCM divisor 2/2

The report shows that the Xilinx Virtex-2 technology is used for pads, clock generation and mem-
ories. The PCI initiator/target bridge is implemented, and the optional PCI trace buffer is included.
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Generics can be provided as command line arguments to ‘vsim’. It is simple to simulate an ASIC
instead of an Xilinx Virtex-2 implementation.
$ vsim -gtech=6 -gmemtech=3 -gclktech=0 -c netcard

Simulate the first 100 ns by writing ‘run’.
# Ethernet/PCI Network Card Demonstration design
# GRLIB Version 1.0.15, build 2194
# Target technology: atc18,  memory library: virage
# ahbctrl: AHB arbiter/multiplexer rev 1
# ahbctrl: Common I/O area disabled
# ahbctrl: AHB masters: 3, AHB slaves: 4
# ahbctrl: Configuration area at 0xfffff000, 4 kbyte
# ahbctrl: mst0: Gaisler Research        Fast 32-bit PCI Bridge
# ahbctrl: mst1: Gaisler Research        GR Ethernet MAC
# ahbctrl: mst2: Gaisler Research        AHB Debug UART
# ahbctrl: slv0: Gaisler Research        AHB/APB Bridge
# ahbctrl:       memory at 0x80000000, size 1 Mbyte
# ahbctrl: slv1: Gaisler Research        Fast 32-bit PCI Bridge
# ahbctrl:       memory at 0xe0000000, size 256 Mbyte
# apbctrl: APB Bridge at 0x80000000 rev 1
# apbctrl: slv0: Gaisler Research        GR Ethernet MAC
# apbctrl:       I/O ports at 0x80000b00, size 256 byte
# apbctrl: slv1: Gaisler Research        AHB Debug UART
# apbctrl:       I/O ports at 0x80000100, size 256 byte
# apbctrl: slv3: Gaisler Research        32-bit PCI Trace Buffer
# apbctrl:       I/O ports at 0x80010000, size 64 kbyte
# apbctrl: slv6: Gaisler Research        Fast 32-bit PCI Bridge
# apbctrl:       I/O ports at 0x80000200, size 256 byte
# ahbuart1: AHB Debug UART rev 0
# pci_mtf1: 32-bit PCI/AHB bridge  rev 0, 2 Mbyte PCI memory BAR, 64-word FIFOs
# greth1: 10/100 Mbit Ethernet MAC rev 01, EDCL 0, buffer 0 kbyte 8 txfifo

The report shows that the ACT18 technology is used for pads and Virage technology for the mem-
ories.



64

6.3 LEON3MP

The LEON3MP design example described in this section is a multi-processor system based on
LEON3MP. The design is based on IP cores from GRLIB. Only part of the VHDL code is listed
hereafter, with comments after each excerpt. The design and the full source code is located in
grlib/designs/leon3mp.

entity leon3mp is
  generic (
    ncpu : integer := 1;

The number of LEON3 processors in this design example can be selected by means of the NCPU
generic shown in the entity declaration excerpt above.

signal leon3i : l3_in_vector(0 to NCPU-1);
signal leon3o : l3_out_vector(0 to NCPU-1);
signal irqi   : irq_in_vector(0 to NCPU-1);
signal irqo   : irq_out_vector(0 to NCPU-1);
signal l3dbgi : l3_debug_in_vector(0 to NCPU-1);
signal l3dbgo : l3_debug_out_vector(0 to NCPU-1);

The debug support and interrupt handling is implemented separately for each LEON3 instantiation
in a multi-processor system. The above signals are therefore declared in numbers corresponding to
the NCPU generic.
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

The multiple LEON AMBA interfaces do not need any special handling in this example, and the
AHB master/slave are therefore declared in the same way as in the previous example.
----------------------------------------------------------------------
---  LEON3 processor and DSU -----------------------------------------
----------------------------------------------------------------------
  cpu : for i in 0 to NCPU-1 generate
    u0 : leon3s               -- LEON3 processor
      generic map (hindex => i, fabtech => FABTECH, memtech => MEMTECH,
                   fpu => fpu, dsu => dbg, disas => disas,
                   pclow => pclow, tbuf => 8*dbg,
                   v8 => 2, mac => 1, nwp => 2, lddel => 1,
                   isetsize => 1, ilinesize => 8, dsetsize => 1,
                   dlinesize => 8, dsnoop => 0)
      port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, leon3i(i), leon3o(i));

    irqi(i)         <= leon3o(i).irq;
    leon3i(i).irq   <= irqo(i);
    leon3i(i).debug <= l3dbgi(i);
    l3dbgo(i)       <= leon3o(i).debug;
  end generate;

The multiple LEON3 processors are instantiated using a generate statement. Note that the AHB
index generic is incremented with the generate statement. Note also that the complete AHB slave
input is fed to the processor, to allow for cache snooping.

  dcomgen : if dbg = 1 generate
    dsu0 : dsu                -- LEON3 Debug Support Unit
      generic map (hindex => 2, ncpu => ncpu, tech => memtech, kbytes => 2)
      port map (rstn, clkm, ahbmi, ahbsi, ahbso(2), l3dbgo, l3dbgi, dsui, dsuo);

    dsui.enable <= dsuen;
    dsui.break  <= dsubre;
    dsuact      <= dsuo.active;

    dcom0: ahbuart            -- Debug UART
      generic map (ahbndx => NCPU, pindex => 7, paddr => 7)
      port map (rstn, clkm, dui, duo, apbi, apbo(7), ahbmi, ahbmo(NCPU));

    dui.rxd <= dsurx;
    dsutx <= duo.txd;
  end generate;
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There is only one debug support unit (DSU) in the design, supporting multiple LEON3 processors.

  irqctrl0 : irqmp -- interrupt controller
    generic map (pindex => 2, paddr => 2, ncpu => NCPU)
    port map (rstn, clkm, apbi, apbo(2), irqi, irqo);

There is also only one interrupt controller, supporting multiple LEON3 processors.

To prepare the design for simulation with ModelSim, move to the grlib/designs/leon3mp directory
and execute the ‘make vsim’ command.
$ make vsim

To simulate the default design execute the ‘vsim’ command.
$ vsim -c leon3mp

Simulate the first 100 ns by writing ‘run’.
# LEON3 Demonstration design
# GRLIB Version 0.10
# Target technology: virtex ,  memory library: virtex
# ahbctrl: AHB arbiter/multiplexer rev 1
# ahbctrl: Common I/O area at 0xfff00000, 1 Mbyte
# ahbctrl: Configuration area at 0xfffff000, 4 kbyte
# ahbctrl: mst0: Gaisler Research        Leon3 SPARC V8 Processor
# ahbctrl: mst1: Gaisler Research        AHB Debug UART
# ahbctrl: slv0: European Space Agency   Leon2 Memory Controller
# ahbctrl:       memory at 0x00000000, size 512 Mbyte, cacheable, prefetch
# ahbctrl:       memory at 0x20000000, size 512 Mbyte
# ahbctrl:       memory at 0x40000000, size 1024 Mbyte, cacheable, prefetch
# ahbctrl: slv1: Gaisler Research        AHB/APB Bridge
# ahbctrl:       memory at 0x80000000, size 16 Mbyte
# ahbctrl: slv2: Gaisler Research        Leon3 Debug Support Unit
# ahbctrl:       memory at 0x90000000, size 256 Mbyte
# ahbctrl: slv6: Gaisler Research        AMBA Trace Buffer
# ahbctrl:       I/O port at 0xfff40000, size 128kbyte
# apbmst: APB Bridge at 0x80000000 rev 1
# apbmst: slv0: European Space Agency   Leon2 Memory Controller
# apbmst:       I/O ports at 0x80000000, size 256 byte
# apbmst: slv1: Gaisler Research        Generic UART
# apbmst:       I/O ports at 0x80000100, size 256 byte
# apbmst: slv2: Gaisler Research        Multi-processor Interrupt Ctrl.
# apbmst:       I/O ports at 0x80000200, size 256 byte
# apbmst: slv3: Gaisler Research        Modular Timer Unit
# apbmst:       I/O ports at 0x80000300, size 256 byte
# apbmst: slv7: Gaisler Research        AHB Debug UART
# apbmst:       I/O ports at 0x80000700, size 256 byte
# ahbtrace6: AHB Trace Buffer, 2 kbytes
# gptimer3: GR Timer Unit rev 0, 16-bit scaler, 2 32-bit timers, irq 8
# apbictrl: Multi-processor Interrupt Controller rev 1, #cpu 1
# apbuart1: Generic UART rev 1, irq 2
# ahbuart7: AHB Debug UART rev 0
# dsu2: LEON3 Debug support unit + AHB Trace Buffer, 2 kbytes
# leon3_0: LEON3 SPARC V8 processor rev 0
# leon3_0: icache 1*1 kbyte, dcache 1*1 kbyte
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7 Core-specific design information

7.1 LEON3 double-clocking

7.1.1  Overview

To avoid critical timing paths in large AHB systems, it is possible to clock the LEON3 processor
core at an inter multiple of the AHB clock. This will allow the processor to reach higher perfor-
mance while executing out of the caches. This chapter will describe how to implement a LEON3
double-clocked system using the LEON3-CLK2X template design as an example.

7.1.2  LEON3-CLK2X template design

The LEON3-CLK2X design is a multi frequency design based on double-clocked LEON3 CPU
core. The LEON3 CPU core and DSU run at multiple AHB frequency internally, while the AHB
bus and other AHB components are clocked by the slower AHB clock. Double clocked version of
the interrupt controller is used, synchronizing interrupt level signals between the CPU and the
interrupt controller.

The design can be configured to support different ratios between CPU and AHB clock such as 2x,
3x or 4x. If dynamic clock switching is enabled, an glitch-free clock multiplexer selecting between
the fast CPU clock and the slower AHB clock is used to dynamically change frequency of the CPU
core (by writing to an APB register).

7.1.3  Clocking

The design uses two synchronous clocks, AHB clock and CPU clock. For Xilinx and Altera tech-
nologies the clocks are provided by theclkgenmodule, for ASIC technologies a custom clock gen-
eration circuit providing two synchronous clocks with low skew has to be provided.

An AHB clock qualifier signal, identifying end of an AHB clock cycle is necessary for correct
operation of the double-clocked cores. The AHB clock qualifier signal (HCLKEN), indicating end
of an AHB clock cycle, is provided by theqmodmodule. The signal is generated in CPU clock
domain and is active during the last CPU clock cycle during low-phase of the AHB clock. Figure
11 shows timing for CPU and AHB clock signals (CPUCLK, HCLK) and AHB clock qualifier sig-
nal (HCLKEN) for clock ratios 2x and 3x.

Figure 11.Timing diagram for CPUCLK, HCLK and HCLKEN
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7.1.4  Multicycle Paths

Paths going through both CPU and AHB clock domains have propagation time of one AHB clock
cycle, and should be marked as multicycle paths with following exceptions:

Sample DC script defining multicycle paths and exceptions is provided in the design directory
(dblclk.dc).

Figure 12 shows synchronization of AHB signals starting in HCLK clock domain and ending in
CPUCLK domain (inside the double clocked cores LEON3S2X and DSU3_2X). These AHB sig-
nals are captured by registers in CPUCLK domain at the end of AHB clock cycle, allowing propa-
gation time of 2 or more CPUCLK cycles (one HCLK cycle). The end of the AHB clock cycle is
indicated by the AHB clock qualifier signal HCLKEN. One of the inputs of the AND gate in figure
below is connected to the clock qualifier signal HCLKEN ensuring that the value of the signal
AHBI is latched into R2 at the end of AHB cycle (HCLKEN = ‘1’). The value of signal AHBI is
not valid in the CPUCLK clock domain if the qualifier signal HCLKEN is low. In this case, the
AND gate will be closed and the value of the signal AHBI will not propagate to register R2.

Start point Through End point Propagation time

leon3s2x core

CPUCLK ahbi CPUCLK N CPUCLK

CPUCLK ahbsi CPUCLK N CPUCLK

CPUCLK ahbso CPUCLK N CPUCLK

HCLK irqi CPUCLK 1 CPUCLK

CPUCLK irqo HCLK 1 CPUCLK

CPUCLK u0_0/p0/c0/sync0/r[*]
(register)

1 CPUCLK

dsu3_2x core

CPUCLK ahbmi  CPUCLK N CPUCLK

CPUCLK ahbsi  CPUCLK N CPUCLK

dsui  CPUCLK 1 CPUCLK

r[*] (register) rh[*] (register) 1 CPUCLK

irqmp2x core

r2[*] (register)  r[*] (register) 1 CPUCLK

* N is ratio between CPU and AHB clock frequency (2, 3, ...)
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Synchronization of AHB signals going from the double clocked cores to the AHB clock domain is
shown if figure 13. The AND gate is open when CPU (or DSU) performs an AHB access (AHBEN
= ‘1’). When the AND gate is open, the signal AHBO will be stable during the whole AHB cycle
and its value propagates to the HCLK clock domain (AHB bus). When CPU does not perform
AHB access (CLKEN = ‘1’) the AND gate is closed (AHBEN = ‘0’) disabling propagation of sig-
nal AHBO to the HCLK clock domain.

Figure 12.Synchronization between HCLK and CPUCLK clock domains
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Figure 13.Synchronization between CPUCLK and HCLK clock domains
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The AND gates in figures 12 and 13 are 2-input clock AND gates. Synthesis tool should not opti-
mize these AND gates. Sample DC-script puts ‘don’t-touch’ attribute on these cells to prevent
optimization.

The multicycle constraints for the GRLIB double clocked cores are typically defined by start clock
domain, intermediate points and end clock domain. Although FPGA synthesis tools provide sup-
port for multicycle paths, they do not provide or have limited support for this type of multicycle
constraints (start clock domain, intermediate points, end clock domain). This limitation results in
over-constrained FPGA designs (multicycle paths become single cycle) which are fully functional
and suitable for FPGA prototyping.

7.1.5  Dynamic Clock Switching

An optional clock multiplexer switching between the CPU and AHB clocks and providing clock
for double-clocked cores can be enabled. The clock multiplexer is used to dynamically change fre-
quency of the CPU core, e.g. CPU can run at lower AHB frequency during periods with low CPU
load and at twice the AHB frequency during periods with high CPU load.

The clock switching is controlled by writing to theqmodmodules APB register (default address
0x80000400), bit 0: writing ‘1’ will switch to the CPU clock and writing ‘0’ will switch to the
AHB clock.

The clock multiplexer is glitch-free, during clock switching the deselected clock is turned-off
(gated) before the selected clock is enabled and selected.

Dynamic clock switching is available for Xilinx and generic technologies.

7.1.6  Configuration

xconfig

Clock ratios 2x, 3x and 4x between CPU and AHB clock are supported. Clock ratio 2x is sup-
ported for all technologies, ratios 3x and 4x are supported for ASIC technologies. Dynamic clock
switching is available for Xilinx and ASIC technologies.

leon3s2x

Double-clocked LEON3 core is configured similarly to standard LEON3 core (leon3s) through
VHDL generics. An additional VHDL genericclk2x is set to ((clock ratio - 1) + (8 *dyn)) where
dyn is 1 if dynamic clock switching is enabled and 0 if disabled.

qmod

Local qmodmodule generates AHB clock qualifier signal and optionally controls dynamic clock
switching. The module is configured through VHDL - generics defining clock ratio (clkfact),
dynamic clock switching (dynfreq) and address mapping of modules APB register (pindex, paddr,
pmask).

irqmp_2x

VHDL genericclkfact should be set to clock ratio between CPU and AHB clocks.
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8 Using netlists

8.1 Introduction

GRLIB supports the usage of mapped netlists in the implementation flow. The netlists can be
included in the flow at two different points; during synthesis or during place&route. The netlists
can have two basic formats: mapped VHDL (.vhd) or a technology-specific netlist format (.ngo,
.vqm, .edf). The sections below outline how the different formats are handled.

8.2 Mapped VHDL

A core provided in mapped VHDL format is included during synthesis, and treated the same as
any RTL VHDL code. To use such netlist, the core must be configured to incorporate the netlist
rather then the RTL VHDL code. This can be done in the xconfig configuration menu, or by setting
the ‘netlist’ generic on core. The benefit of VHDL netlists is that the core (and whole design) can
be simulated and verified without special simulation libraries.

The following Gaisler cores support the VHDL netlist format: GRFPU, GRFPU-Lite, GRSPW,
LEON3FT. The netlists are available for the following technologies:

• Xilinx: GRFPU, GRFPU-Lite, GRSPW, GRUSBHC

• Actel: GRSPW, LEON3FT

• Altera: GRFPU, GRFPU-lite

The Gaisler netlists have the following default configurations:

• GRFPU-Lite: simple FPC controller

• GRSPW: 16 word AHB FIFO, 16 byte TX/RX FIFO, no RMAP support, RMAP CRC support enabled.
FIFO protection can be enabled/disabled through xconfig.

• LEON3FT: 8 reg windows, SVT, no hardware MUL/DIV, 2 watch-points, power-down enabled, 8 Kbyte
icache with 32 bytes/line, 4 Kbyte dcache with 16/byte/line, GRFPU-Lite enabled

• GRUSBHC: One port configuration with only universal controller, one port with only enhanced control-
ler, one port with both controllers, and two ports with both controllers. All other generics are set to their
default values (see GRUSBHC section ofgrip.pdf).

Contact Aeroflex Gaisler if other settings or technologies for the netlists are required. Netlists can
also be delivered for other cores, such as GRETH_GBIT.

Note that when implementing Xilinx systems, the standard (non-FT) LEON3 core is always used,
even if LEON3FT is selected in xconfig. This allows the user to change the parameters to the core
since the standard version of LEON3 is provided in source code.

8.3 Xilinx netlist files

To use Xilinx netlist files (.ngo or .edf), the netlist should be placed in the ‘netlists/xilinx/tech’
directories. During place&route, the ISE mapper will look in this location and replace and black-
boxes in the design with the corresponding netlist. Note that when using .ngo or .edf files, the
‘netlist’ generic on the cores should NOT be set.

A special case exists for GRFPU and GRFPU-lite netlists. In GRLIB distributions that lack FPU
source code, the netlist version of the selected FPU core will always be instantiated. When the
design is simulated a VHDL netlist will be used (if available) and when the design is synthesized
an EDIF netlist will be used. This is done in order to speed up synthesis. Parsing and performing
synthesis on VHDL netlists is time consuming and using an EDIF netlist instead decreases the
time required to run the tools.



71

Some tool versions have bugs that prevent them from using EDIF netlists. In order to work around
such issues, convert the EDIF netlist to a .ngo netlist using theedif2ngdapplication in the ISE
suite. After a netlist has been converted to .ngo format the EDIF version can be removed from the
library.

8.4 Altera netlists

To use Altera netlist files (.vqm), the netlist should be placed in the ‘netlists/altera/tech’ directo-
ries, or in the current design directory. During place&route, the Altera mapper will look in these
location and replace and black-boxes in the design with the corresponding netlist. Note that when
using .vqm files, the ‘netlist’ generic on the cores should NOT be set.

A special case exists for GRFPU and GRFPU-lite netlists. In GRLIB distributions that lack FPU
source code, the netlist version of the selected FPU core will always be instantiated. When the
design is simulated a VHDL netlist will be used (if available) and when the design is synthesized a
.vqm netlist will be used. This is done in order to speed up synthesis and due to the synthesis tools
not always being able to handle VHDL netlists correctly.

8.5 Known limitations

Some tool versions have bugs that prevent them from using EDIF netlists. In order to work around
such issues, convert the EDIF netlist to a .ngo netlist using theedif2ngdapplication in the ISE
suite. After a netlist has been converted to .ngo format the EDIF version can be removed from the
library

When synthesizing with Xilinx XST, the tool can crash when the VHDL netlist of GRFPU is used.
This is not an issue with recent GRLIB versions since the VHDL netlists are currently only used
for simulation.
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9 Extending GRLIB

9.1 Introduction

GRLIB consists of a number of VHDL libraries, each one providing a specific set of interfaces or
IP cores. The libraries are used to group IP cores according to the vendor, or to provide shared data
structures and functions. Extension of GRLIB can be done by adding cores to an existing library,
adding a new library and associated cores/packages, adding portability support for a new target
technology, adding support for a new simulator or synthesis tool, or adding a board support pack-
age for a new FPGA board.

9.2 GRLIB organisation

The automatic generation of compile scripts searches for VHDL libraries in the file lib/libs.txt, and
in lib/*/libs.txt. The libs.txt files contains paths to directories containing IP cores to be compiled
into the same VHDL library. The name of the VHDL library is the same as the directory. The main
libs.txt (lib/libs.txt) provides mappings to libraries that are always present in GRLIB, or which
depend on a specific compile order (the libraries are compiled in the order they appear in libs.txt):
$ cat lib/libs.txt
grlib
tech/atc18
tech/apa
tech/unisim
tech/virage
fpu
gaisler
esa
opencores

Relative paths are allowed as entries in the libs.txt files. The path depth is unlimited. The leaf of
each path corresponds to a VHDL libary name (e.g. ‘grlib’ and ‘unisim’).

Each directory specified in the libs.txt contains the file dirs.txt, which contains paths to sub-direc-
tories containing the actual VHDL code. In each of the sub-directories appearing in dirs.txt should
contain the files vhdlsyn.txt and vhdlsim.txt. The file vhdlsyn.txt contains the names of the files
which should be compiled for synthesis (and simulation), while vhdlsim.txt contains the name of
the files which only should be used for simulation. The files are compiled in the order they appear,
with the files in vhdlsyn.txt compiled before the files in vhdlsim.txt.

The example below shows how the AMBA package in the GRLIB VHDL library is constructed:
$ ls lib/grlib

amba/  dirs.txt  modgen/  sparc/  stdlib/  tech/  util/

$ cat lib/grlib/dirs.txt

stdlib util sparc modgen amba tech

$ ls lib/grlib/amba

ahbctrl.vhd amba.vhd  apbctrl.vhd vhdlsyn.txt

$ cat grlib/lib/grlib/amba/vhdlsyn.txt

amba.vhd apbctrl.vhd ahbctrl.vhd

The libraries listed in the grlib/lib/libs.txt file are scanned first, and the VHDL files are added to
the automaticaly generated compile scipts. Then all sub-directories in lib are scanned for addi-
tional libs.txt files, which are then also scanned for VHDL files. It is therefore possible to add a
VHDL library (= sub-directory to lib) without having to edit lib/libs.txt, just by inserting into lib.

When all libs.txt files have been scanned, the dirs.txt file in lib/work is scanned and any cores in
the VHDL work library are added to the compile scripts. The work directory must be treated last to
avoid circular references between work and other libraries. The work directory is always scanned
as does not appear in lib/libs.txt.
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9.3 Adding an AMBA IP core to GRLIB

9.3.1  Example of adding an existing AMBA AHB slave IP core

An IP core with AMBA interfaces can be easily adapted to fit into GRLIB. If the AMBA signals
are declared as standard IEEE-1164 signals, then it is simple a matter of assigning the IEEE-1164
signal to the corresponding field of the AMBA record types declared in GRLIB, and to define the
plug&play configuration information, as shown in the example hereafter.

The plug&play configuration utilizes the constants and functions declared in the GRLIB AMBA
‘types’ package, and the HADDR and HMASK generics.

Below is the resulting entity for the adapted component:
library ieee; use ieee.std_logic_1164.all;
library grlib; use grlib.amba.all;

entity ahb_example is
  generic (
    hindex :     integer := 0;

haddr :     integer := 0;
    hmask :     integer := 16#fff#);
  port (

rst : in  std_ulogic;
clk : in  std_ulogic;
ahbsi   : in  ahb_slv_in_type;

    ahbso   : out ahb_slv_out_type);
end;

architecture rtl of ahb_example is

-- component to be interfaced to GRLIB
component ieee_example
    port (
      rst       : in  std_ulogic;
      clk       : in  std_ulogic;
      hsel      : in  std_ulogic;                        -- slave select
      haddr     : in  std_logic_vector(31 downto 0);     -- address bus (byte)
      hwrite    : in  std_ulogic;                        -- read/write
      htrans    : in  std_logic_vector(1 downto 0);      -- transfer type
      hsize     : in  std_logic_vector(2 downto 0);      -- transfer size
      hburst    : in  std_logic_vector(2 downto 0);      -- burst type
      hwdata    : in  std_logic_vector(31 downto 0);     -- write data bus
      hprot     : in  std_logic_vector(3 downto 0);      -- protection control
      hreadyi  : in  std_ulogic;                        -- transfer done
      hmaster   : in  std_logic_vector(3 downto 0);      -- current master
      hmastlock : in  std_ulogic;                        -- locked access
      hreadyo  : out std_ulogic;                        -- transfer done
      hresp     : out std_logic_vector(1 downto 0);      -- response type
      hrdata    : out std_logic_vector(31 downto 0);     -- read data bus
      hsplit    : out std_logic_vector(15 downto 0)); -- split completion
end component;

-- plug&play configuration
constant HCONFIG: ahb_config_type := (

    0      => ahb_device_reg (VENDOR_EXAMPLE, EXAMPLE_AHBRAM, 0, 0, 0),
    4      => ahb_membar(memaddr, '0', '0', memmask), others => X"00000000");

begin
 ahbso.hconfig <= HCONFIG; -- Plug&play configuration
 ahbso.hirq <= (others => ‘0’); -- No interrupt line used

  -- original component
e0: ieee_example

    port map(
      rst, clk, ahbsi.hsel(ahbndx), ahbsi.haddr, ahbsi.hwrite, ahbsi.htrans, ahbsi.hsize,

ahbsi.hburst, ahbsi.hwdata, ahbsi.hprot, ahbsi.hready, ahbsi.hmaster,
ahbsi.hmastlock, ahbso.hready, ahbso.hresp, ahbso.hrdata, ahbso.hsplit);

end;

The files containing the entityahb_examplethe entity for ieee_exampleshould be added to
GRLIB by listing the files in avhdlsyn.txtfile located in a directory that will be scanned by the
GRLIB scripts, as described in section 9.2. The paths invhdlsyn.txtcan be relative, allowing the
VHDL files to be placed outside the GRLIB tree. The entities and packages will be compiled into
a library with the same name as the directory that holds thevhdlsyn.txt file.
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In theahb_exampleexample, the core does not have the ability to assert an interrupt. In order to
assert an interrupt, an AHB core must drive thehirq vector in the ahb_slv_out_type(or
ahb_mst_out_type) output record. If the core is an APB slave, it should drive theapb_slv_out_type
record’spirq vector. Positionn of hirq/pirq corresponds to interrupt linen. All unused interrupt
lines must be driven to ‘0’.

9.3.2  AHB Plug&play configuration

As described in section 5.3, the configuration record from each AHB unit is sent to the AHB bus
controller via the HCONFIG signal. From this information, the bus controller automatically cre-
ates the read-only plug&play area.

In the ahb_exampleexample in the previous section, the plug&play configuration is held in the
constantHCONFIG, which is assigned to the outputahbso.hconfig. The constant is created with:

-- plug&play configuration
constant HCONFIG : ahb_config_type := (

    0      => ahb_device_reg (VENDOR_EXAMPLE, EXAMPLE_AHBRAM, 0, 0, 0),
    4      => ahb_membar(memaddr, '0', '0', memmask), others => X"00000000");

The ahb_config_typeis an array of 32-bit vectors. Each position in this array corresponds to the
same word in the core’s plug&play information. Section 5.3.1 describes the plug&play informa-
tion in the following way: The first word is called the identification register and contains informa-
tion on the device type and interrupt routing. The last four words are called bank address registers,
and contain address mapping information for AHB slaves. The remaining three words are cur-
rently not assigned and could be used to provide core-specific configuration information.

The AMBA package (lib/grlib/amba/amba.vhd) in GRLIB provides functions that help users cre-
ate proper plug&play information. Two of these functions are used above. Theahb_device_reg
function creates the identification register value for an AHB slave or master:
ahb_device_reg (vendor, device, cfgver, version, interrupt)

The parameters are explained in the table below:

If an IP core only has an AHB master interface, the only position inHCONFIG that needs to be
specified is the first word:
constant hconfig : ahb_config_type := (
  0 => ahb_device_reg ( venid, devid, 0, version, 0),
  others => X"00000000");

TABLE 33. ahb_device_reg parameters

Parameter Comments

vendor Integer Vendor ID. Typically defined inlib/grlib/amba/devices.vhd. It is recom-
mended that new cores be added under a new vendor ID or under the contrib
vendor ID.

device Integer Device ID. Typically defined inlib/grlib/amba/devices.vhd. The combi-
nation of vendor and device ID must not match any existing core as this may
lead to your IP core being initialized by drivers for another core.

cfgver Plug&play information version, only supported value is 0.

version Core version/revision. Assigned to 5-bit wide field in plug&plat information.

interrupt Set this value to the first interrupt line that the core drives. Set to 0 if core does
not make use of interrupts.
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If an IP core has an AHB slave interface, as in theahb_exampleexample, we also need to specify
the memory area(s) that the slave will map. Again, the HCONFIG constant fromahb_example is:

-- plug&play configuration
constant HCONFIG : ahb_config_type := (

    0      => ahb_device_reg (VENDOR_EXAMPLE, EXAMPLE_AHBRAM, 0, 0, 0),
    4      => ahb_membar(memaddr, '0', '0', memmask), others => X"00000000");

The last four words ofahb_config_type(positions 4 - 7) are called bank address registers (BARs),
and contain memory map information. This information determines address decoding in the AHB
controller (AHBCTRL core). Address decoding is described in detail under section 5.3.3. When
creating an AHB memory bank, theahb_membarfunction can be used to automatically generate
the correct layout for a BAR:
ahb_membar(memaddr, prefetch, cache, memmask)

To create an AHB I/O bank, theahb_iobar function can be used:
ahb_iobar(memaddr, memmask)

The parameters of these functions are described in the table below:

An AHB slave can map up to four address areas (it has four bank address registers). Typically, an
IP core has one AHB I/O bank with registers and zero or several AHB memory banks that map a
larger memory area. One example is the GRLIB DDR2 controller (DDR2SPA) that has the follow-
ing HCONFIG:
constant hconfig : ahb_config_type := (
   0 => ahb_device_reg ( VENDOR_GAISLER, GAISLER_DDR2SP, 0, REVISION, 0),
   4 => ahb_membar(haddr, '1', '1', hmask),
   5 => ahb_iobar(ioaddr, iomask),
   others => zero32);

Position four, the first bank address register, defines an AHB memory bank which maps external
DDR2 SDRAM memory. Position five, the second bank address register, defines an AHB I/O
bank that holds the memory controller’s register interface. On this core, thehaddr, hmask, ioaddr
andiomask values are set via VHDL generics.

For IP cores that map multiple memory areas, there is no need for the IP core to decode the address
in order to determine which bank that is accessed. The AHB controller decodes the incoming
address and selects the correct AHB slave via the HSEL vector. The AHB controller also indicates
which bank that is being accessed via the HMBSEL vector, when bankn is accessed HMBSEL(n)
will be asserted.

9.3.3  Example of creating an APB slave IP core

The next page contains an APB slave example core. The IP core has one memory mapped 32-bit
register that will be reset to zero. The register can be read or written from register address offset 0.
The core’s base address, mask and bus index settings are configurable via VHDL generics (pindex,
paddr, pmask). Thepaddr andpmaskVHDL generics are propagated to the APB bridge via the
apbo.pconfigsignal and the index is propagated via theapbo.pindexsignal. These values are then
used by the APB bridge to generate the APB address decode and slave select logic.

TABLE 34. ahb_membar/ahb_iobar parameters

Parameter Comments

memaddr Integer value propagated to BAR.ADDR

memmask Integer value propagated to BAR.MASK

prefetch Std_Logic value propagated to prefetchable field (P) in bank address register.
Only applicable for AHB memory bars (ahb_membar function).

cache Std_Logic value propagated to cacheable field (C) in bank address register. Only
applicable for AHB memory bars (ahb_membar function).
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Example of APB slave IP core with one 32-bit register that can be read and written:
library ieee; use ieee.std_logic_1164.all;
library grlib; use grlib.amba.all; use grlib.devices.all;
library gaisler; use gaisler.misc.all;

entity apb_example is
  generic (
    pindex   : integer := 0;
    paddr    : integer := 0;
    pmask    : integer := 16#fff#);
  port (
    rst    : in  std_ulogic;
    clk    : in  std_ulogic;
    apbi   : in  apb_slv_in_type;
    apbo   : out apb_slv_out_type);
end;

architecture rtl of apb_example is

  constant REVISION : integer := 0;

  constant PCONFIG : apb_config_type := (
    0 => ahb_device_reg (VENDOR_ID, DEVICE_ID, 0, REVISION, 0),
    1 => apb_iobar(paddr, pmask));

  type registers is record
    reg : std_logic_vector(31 downto 0);
  end record;

  signal r, rin : registers;

begin

  comb : process(rst, r, apbi)
    variable readdata : std_logic_vector(31 downto 0);
    variable v        : registers;
  begin
    v := r;

    -- read register
    readdata := (others => '0');
    case apbi.paddr(4 downto 2) is
      when "000" => readdata := r.reg(31 downto 0);
      when others => null;
    end case;

    -- write registers
    if (apbi.psel(pindex) and apbi.penable and apbi.pwrite) = '1' then
      case apbi.paddr(4 downto 2) is
        when "000" => v.reg := apbi.pwdata;
        when others => null;
      end case;
    end if;

    -- system reset
    if rst = '0' then v.reg :=  (others => '0'); end if;

    rin <= v;
    apbo.prdata <= readdata; -- drive apb read bus
  end process;

  apbo.pirq <= (others => '0');         -- No IRQ
  apbo.pindex <= pindex;                -- VHDL generic
  apbo.pconfig <= PCONFIG;              -- Config constant

-- registers
  regs : process(clk)
  begin
    if rising_edge(clk) then r <= rin; end if;
  end process;

-- boot message

-- pragma translate_off
    bootmsg : report_version

generic map ("apb_example" & tost(pindex) &": Example core rev " & tost(REVISION));
-- pragma translate_on

end;
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The steps required to instantiate theapb_example IP core in a system are:

• Add the file to a directory covered by the GRLIB scripts (vialibs.txt anddirs.txt)

• Add the file tovhdlsyn.txtin the current directory

• Modify the example to use a unique vendor and device ID (see creation of PCONFIG constant)

• Create a component for theapb_example core in a package that is also synthesized.

• Include the package in your design top-level

• Instantiate the component in your design top-level

For a complete example, see the General Purpose Register (GRGPREG) IP core located inlib/
gaisler/misc/grgpreg.vhd. That core is very similar to the example given in this section. The GRG-
PREG core has a component declaration in the grlib.misc package located atlib/gaisler/misc/
misc.vhd. Note that both of these files are listed in thevhdlsyn.txtfile located in the same directory.

9.3.4  APB plug&play configuration

APB slave plug&play configuration is propagated via theapb_slv_out_typerecord’s pconfig
member. The configuration is very similar to that of an AHB slave. The main difference is that
APB slaves only have one type of BAR and each APB slave only has one bank. The creation of the
PCONFIG array in the previous section looked like:
constant PCONFIG : apb_config_type := (
    0 => ahb_device_reg (VENDOR_ID, DEVICE_ID, 0, REVISION, 0),
    1 => apb_iobar(paddr, pmask));

The ahb_device_regfunction has been described in section 9.3.2. Theapb_iobarfunction takes
the same arguments as theahb_iobar function, also described in section 9.3.2.

9.4 Using verilog code

Verilog does not have the notion of libraries, and although some CAD tools supports the compila-
tion of verilog code into separate libabries, this feature is not provided in all tools. Most CAD tools
however support mixing of verilog and VHDL, and it is therefore possible to add verilog code to
the work library. Adding verilog files is done in the same way as VHDL files, except that the ver-
ilog file names should appear invlogsyn.txt andvlogsim.txt.

The basic steps for adding a synthesizable verilog core are:

• Create a directory and add it tolibs.txt anddirs.txt as described in section 9.2, or use an existing directory.

• List the verilog files in avlogsyn.txt file located in the selected directory

• Create a VHDL component declaration for the verilog top-level

In case the verilog IP core will be instantiated directly in the design, the component can be added
to a package. This package can then be referenced in the design’s top-level and the verilog core
can be instantiated using the VHDL component.

In case the verilog IP core has an AMBA interface, it will likely require wrapping in order to add
the GRLIB AMBA plug&play signals. To do this, the procedure described in section 9.3.1 can be
used, where theieee_examplecomponent declaration would be the VHDL component for the ver-
ilog IP core.

As mentioned above, all CAD tools may not support compiling verilog code into a library. Should
the strategy above not work, another option is to list the verilog files in theVLOGSYNFILESvari-
able defined in the (template) design’s Makefile and to create the VHDL component of the verilog
IP core in the design’s top-level.

Other issues that may arise include propagation problems of VHDL generics to Verilog parameters
(issues crossing the language barrier). Many tools handle propagation of integer and string values
correctly. Should there be any problems, it is recommended to change the Verilog code to remove
the parameters.
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9.5 Adding portabilty support for new target technologies

9.5.1  General

New technologies to support portability can be added to GRLIB without the need to modify any
previously developed designs. This is achieved by technology independent encapsulation of com-
ponents such as memories, pads and clock buffers. The technology mapping is organized as fol-
lows:

• A VHDL library with the technology simulation models is placed in lib/tech/library

• Wrappers for memory, pads, PLL and other cells are placed under lib/techmap/library

• All ‘virtual’ components with technology mapping are placed in lib/techmap/maps

• Declaration of all ‘virtual’ components and technologies is made in lib/techmap/gencomp/gencomp.vhd

An entity that uses a technology independent component needs only to make the techmap.gen-
comp package visible, and can then instantiate any of the mapped components.

9.5.2  Adding a new technology

A new technology is added in four steps. First, a VHDL library is created in the lib/tech/library
location. Secondly, a package containing all technology specific component declarations is created
and the source code file name is added to the ‘vhdlsyn.txt’ or ‘vlogsyn.txt’ file. Third, simulation
models are created for all the components and the source file names are added to the ‘vhdlsim.txt’
or ‘vlogsim.txt’ file. A technology constant is added to the GENCOMP package defined in the
TECHMAP library. The library name is not put in lib/libs.txt but added either to the FPGALIBS or
ASICLIBS in bin/Makfile.

The technology library part is completed and the components need to be encapsulated as described
in the next section. As an example, the ASIC memories from Virage are defined in the VIRAGE
library, located in the lib/virage directory. The component declarations are defined in the VCOM-
PONENTS package in the virage_vcomponents.vhd file. The simulation models are defined in
virage_simprims.vhd.

9.5.3  Encapsulation

Memories, pads and clock buffers used in GRLIB are defined in the TECHMAP library. The
encapsulation of technology specific components is done in two levels.

The lower level handles the technology dependent interfacing to the specific memory cells or
macro cells. This lower level is implemented separately for each technology as described hereafter.

For each general type of memory, pad or clock buffer, an entity/architecture is created at the lower
level. The entity declarations are technology independent and have similar interfaces with only
minor functional variations between technologies. The architectures are used for instantiating,
configuring and interfacing the memory cells or macro cells defined for the technology.

A package is created for each component type containing component declarations for the afore-
mentioned entities. Currently there is a separate memory, pad and clock buffer package for each
technology. The components in these packages are only used in the higher level, never directly in
the designs or IP cores.

The higher level defines a technology independent interface to the memory, pad or clock buffer.
This higher level is implemented only once and is common to all technologies.

For each general type of memory, pad or clock buffer, an entity/architecture is created at the higher
level. The entity declarations are technology independent. The architectures are used for selecting
the relevant lower level component depending on the value of thetech  andmemtech  generics.

A package is created for each component type containing component declarations for the afore-
mentioned entities. Currently there is a separate memory, pad and clock buffer package. The com-
ponents declared in these packages are used in the designs or by other IP cores. The two level
approach allows each technology to be maintained independently of other technologies.
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9.5.4  Memories

The currently defined memory types are single-port, dual-port, two-port and triple-port synchro-
nous RAM. The encapsulation method described in the preceding section is applied to include a
technology implementing one of these memory types.

For example, the ASIC memory models from Virage are encapsulated at the lower level i the
lib/tech/techmap/virage/mem_virage_gen.vhd file. Specifically, the single-port
RAM is defined in the VIRAGE_SYNCRAM entity:
entity virage_syncram is
  generic (

abits : integer := 10;
dbits  : integer := 8 );

  port (
    clk      : in std_ulogic;
    address  : in std_logic_vector(abits -1 downto 0);
    datain   : in std_logic_vector(dbits -1 downto 0);
    dataout  : out std_logic_vector(dbits -1 downto 0);
    enable   : in std_ulogic;
    write    : in std_ulogic);
end;

The corresponding architecture instantiates the Virage specific technology specific memory cell,
e.g. hdss1_256x32cm4sw0 shown hereafter:
architecture rtl of virage_syncram is
  signal d, q, gnd : std_logic_vector(35 downto 0);
  signal a : std_logic_vector(17 downto 0);
  signal vcc : std_ulogic;
  constant synopsys_bug : std_logic_vector(37 downto 0) := (others => '0');
begin

  gnd <= (others => '0'); vcc <= '1';
  a(abits -1 downto 0) <= address;
  d(dbits -1 downto 0) <= datain(dbits -1 downto 0);
  a(17 downto abits) <= synopsys_bug(17 downto abits);
  d(35 downto dbits) <= synopsys_bug(35 downto dbits);
  dataout <= q(dbits -1 downto 0);
  q(35 downto dbits) <= synopsys_bug(35 downto dbits);

  a8d32 : if (abits = 8) and (dbits <= 32) generate
    id0 : hdss1_256x32cm4sw0
      port map (a(7 downto 0), gnd(7 downto 0),clk,

d(31 downto 0), gnd(31 downto 0), q(31 downto 0),
enable, vcc, write, gnd(0), gnd(0), gnd(0), gnd(0), gnd(0));

  end generate;
...

end rtl;

The lib/tech/techmap/virage/mem_virage.vhd file contains the corresponding
component declarations in the MEM_VIRAGE package.
package mem_virage is

component virage_syncram
generic (

abits : integer := 10;
dbits  : integer := 8 );

  port (
clk      : in std_ulogic;

    address  : in std_logic_vector(abits -1 downto 0);
    datain   : in std_logic_vector(dbits -1 downto 0);
    dataout  : out std_logic_vector(dbits -1 downto 0);
    enable   : in std_ulogic;
    write    : in std_ulogic);
  end component;

...
end;

The higher level single-port RAM model SYNCRAM is defined in thelib/gaisler/maps/
syncram.vhd file . The entity declaration is technology independent:
entity syncram is
  generic (

tech  : integer := 0;
abits  : integer := 6;
dbits : integer := 8 );
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  port (
    clk      : in std_ulogic;
    address  : in  std_logic_vector((abits -1) downto 0);
    datain   : in std_logic_vector((dbits -1) downto 0);
    dataout  : out std_logic_vector((dbits -1) downto 0);
    enable   : in std_ulogic;
    write    : in std_ulogic);
end;

The corresponding architecture implements the selection of the lower level components based on
the MEMTECH or TECH generic:
architecture rtl of syncram is
begin

inf : if tech = infered generate
    u0 : generic_syncram generic map (abits, dbits)
         port map (clk, address, datain, dataout, write);
  end generate;

...
  vir  : if tech = memvirage generate
    u0 : virage_syncram generic map (abits, dbits)
         port map (clk, address, datain, dataout, enable, write);
  end generate;

...
end;

The lib/tech/techmap/gencomp/gencomp.vhd file contains the corresponding compo-
nent declaration in the GENCOMP package:
package gencomp is

component syncram
  generic (

tech : integer := 0;
abits  :  integer := 6;
dbits  : integer := 8);

  port (
    clk      : in std_ulogic;
    address  : in std_logic_vector((abits -1) downto 0);
    datain   : in std_logic_vector((dbits -1) downto 0);
    dataout  : out std_logic_vector((dbits -1) downto 0);
    enable   : in std_ulogic;
    write    : in std_ulogic);
  end component;

...
end;

The GENCOMP package contains component declarations for all portable components, i.e. SYN-
CRAM, SYNCRAM_DP, SYNCRAM_2P and REGFILE_3P.

9.5.5  Pads

The currently defined pad types are in-pad, out-pad, open-drain out-pad, I/O-pad, open-drain I/O
pad, tri-state output-pad and open-drain tri-state output-pad. Each pad type comes in a discrete and
a vectorized version.

The encapsulation method described in the preceding sections is applied to include a technology
implementing these pad types.

The file structure is similar to the one used in the memory example above. The pad related files are
located ingrlib/lib/tech/techmap/maps . The grlib/lib/tech/techmap/gen-
comp/gencomp.vhd  file contains the component declarations in the GENCOMP package.

9.5.6  Clock generators

There is currently only one defined clock generator types named CLKGEN.

The encapsulation method described in the preceding sections is applied to include a technology
implementing clock generators and buffers.

The file structure is similar to the one used in the memory example above. The clock generator
related files are located in grlib/lib/tech/techmap/maps. The CLKGEN component is declared in
the GENCOMP package.
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