
1

1 DPRC – FPGA Dynamic Partial Reconfiguration controller with DMA AHB interface

1.1 Overview
The Dynamic Partial Reconfiguration Controller (DPRC) enables self-run-time partial reconfiguration of Xilinx Virtex-4/5/6 and 7

Series FPGAs through the AMBA AHB and the Internal Configuration Access Port (ICAP).
Dynamic Partial Reconfiguration extends the native flexibility of FPGAs making it possible to dynamically change selected portions

of a circuit while the rest of the design is left unchanged and fully functional. The ability to time-multiplex hardware modules at run-

time enables designing complex Systems-on-Chip (SoCs), thus reducing cost, logic resources, and power consumption.
DPR is performed by mean of partial bitstreams, which are binary files storing the physical configuration of a selected logical module

inside the FPGA device. These files are generated resorting to the Xilinx PlanAhead or Vivado tools during the Partial Reconfiguration

design flow, and can be delivered to the ICAP interface to reconfigure a portion of the FPGA’s internal configuration memory.
DPRC can be configured through VHDL generics to operate in three different operating modes:

 Synchronous (Sync),
 Asynchronous (Async - Figure 1),
 Dependable DPR (D2PRC).

Figure 1. DPRC configured in Asynchronous mode

In all operating modes, DPRC is connected on both AMBA AHB and APB buses. The APB interface provides access to control and

status registers, that are used to control and monitor the entire partial reconfiguration process at run-time. The AHB master interface,

with direct memory access capabilities, is used to retrieve partial bitstream data from a memory-mapped peripheral connected to the

AHB bus. This interface is implemented using the DMA2AHB core included in GRLIB. AHB read operations are managed through a

finite state machine (Read Controller). Bitstream data are sent to an asynchronous FIFO. Finally, another state machine (Write

Controller) reads data from the FIFO and delivers them to the ICAP. Write controller works in the ICAP clock domain (100 MHz is

the maximum allowed ICAP frequency) and it implements the “Non-Continuous Data Loading with Free-Running CLK” protocol [3-

6].

If the bus/system clock is lower than 100 MHz, Sync mode should be preferred to the Async mode. In this case, since the bottleneck

of the data transfer is the AHB bus, the ICAP can be clocked using the bus/system clock, avoiding synchronization FIFO and registers

for CDC signals. This leads to a reduced DPRC complexity, and consequently a significant reduction of FPGA’s resources needed to

implement the controller.

In Dependable mode (D2PRC), the more complex controller includes a 32-bit Cyclic Redundancy Check (CRC) module, which assists

the Read Controller, checking the bitstream data prior to loading them into the ICAP. This can be useful when there is the possibility

that bitstream data can be corrupted. In fact, if a faulty bitstream is loaded into the configuration memory, the system may become

inoperable, and the FPGA device must be reconfigured from the scratch. However, when using dynamic partial reconfiguration in 7

Series Xilinx FPGAs this mechanism is already embedded in the ICAP (the so-called PerFrameCRC functionality [3]), thus the Async

or Sync operating modes are sufficient to deal with faulty bitstreams.

2

1.2 Operations
Either working in Sync, Async or D²PRC mode, DPRC shows five 32-bit registers on the APB address space.

Table 1. DPRC APB registers

APB address offset Register
0x0 Control Register
0x4 Address Register
0x8 Status Register
0xC Timer Register

0x10 Reconfigurable Modules Reset Register

31: 0 Size of the bitstream to be loaded (in terms of 32-bit words).

Figure 2. Control register

31: 0 Address of the partial bitstream to be loaded.

Figure 3. Address register

31: 4 RESERVED.

3: 0 STATUS.

 “1111” Partial Reconfiguration Ended Successfully (No errors);

“0100” AHB transfer error;

 “0001” CRC error;

 “1000” Configuration Error (signaled by the ICAP).

Figure 4. Status register

31: 0 Bus clock cycles elapsed from the start to the end of the last reconfiguration process.

Figure 5. Timer register

3

DPRC supports up to 32 different reconfigurable partitions in the design. Each bit of this

register is associated to a bit (in the same position) of the rm_reset DPRC output signal. Each

bit of the rm_reset signal can be associated to the synchronous reset signal of a reconfigurable

partition, acting as “true” reset signal for reconfigurable modules implemented in that

partition. This signal can also act as enable or reset signal of the decoupling logic that should

be located at the outputs of the reconfigurable module (see Section 5).

31: 0 RP(i): set to ‘1’ to give a reset to the associated partition during the reconfiguration

process.

Figure 6. Reset Register

Before starting a reconfiguration, the partial bitstream to be loaded must be already available and accessible through the AHB bus. The

first 32-bit word of the partial bitstream must contain the number of 32-bit words composing the partial bitstream itself (without

including CRC signatures). This first word is used to initialize internal counters, and it must be taken into account when counting partial

bitstream words.

To allow correct operations when DPRC is configured in Dependable mode, each partial bitstream file must be pre-processed by a

software routine at design time. This routine splits the bitstream file in “words blocks”, computes a 32-bit CRC for each block, and

reassembles the bitstream file interleaving the computed CRC signatures at the end of each “block”. The user can choose through a

VHDL generic the number of 32-bit words composing a block to allow a fine-grained or a coarse-grained checking, thus trading-off

the level of dependability against bitstream corruption with respect to the bitstream download time. The words block parameter also

defines the maximum latency of the CRC error detection mechanism. The CRC polynomial implemented by the hardware CRC module

is 1+x3+x14+x18+x29 (0x90022004), which guarantees detection of 100% on burst errors between up to 32 bits, and detection of 100%

on up to five random bit errors in a single CRC block (depending on the actual chosen size).

The C++ source code of the software utility (dprc_sw) is located in <grlib root>/software/dprc/. The utility takes as inputs one or more

raw partial bitstream files (in .rbt format) generated by the Xilinx PlanAhead or Vivado software tools. The raw bitfile can be generated

by including the –b (PlanAhead) or –raw_bitfile (Vivado) option when running the bitstream generation process. The output of this

program is a header file. Each partial bitstream is processed and declared in the header as a unidimensional array named bitstream<i>,

where <i> represents the index of the input bitfile. The first word of this array is equal to the length of the bitstream file, while the rest

of the array contains the processed partial bitstream file, with the CRC signatures computed for each block. The user can choose the

size of the blocks, in terms of 32-bit words, in the range 2 to 496 (the upper bound depends on the actual chosen FIFO depth – see

Section 1.4).

The software utility can be compiled and launched by issuing in a Unix shell:

 g++ -Wall –fexceptions –O2 –c <grlib root>/software/dprc//main.cpp –o <grlib root>/software/dprc/main.o

 g++ -o <grlib root>/software/dprc/dprc_sw <grlib root>/software/dprc/main.o

 ./dprc_sw <path of the input bitstream file 0 (.rbt)> <path of the input bitstream file 1 (.rbt)> … <path of the input

bitstream file N (.rbt)> <Number of 32-bit words per block> <path of the output file (.h)>

The same applies when using Windows operating systems.

*Note: do not run dprc_sw utility on Linux operating systems if .rbt bitstream files have been generated using a Windows version of

Xilinx tools.

The software utility can be used also when DPRC is not configured in Dependable mode by setting 0 in the field reserved to the number

of 32-bit words per block. In this case, CRC signatures are not computed.

The following steps must be executed to setup and start a partial reconfiguration process.

 1. Verify if the four least significant bits of the Status Register are set to 0xF, meaning that DPRC is available and no errors

occurred during the last reconfiguration;

 2. Write in the Address Register the address of the partial bitstream to be loaded;

 3. Set the corresponding bit in the RM Reset Register in order to assert a synchronous reset to the reconfigurable module during

reconfiguration;

 4. Write in the Control Register the number of 32-bit words composing the partial bitstream to be loaded. This write operation

clears the Status Register and starts the reconfiguration process. The DMA module starts a locked undefined length burst

transfer request on the AHB. If working in Dependable mode, at run-time, the DMA module retrieves the partial bitstream

data, while the CRC module computes on-the-fly the signatures. At the end of each CRC block, the run-time computed

4

signature is automatically compared with the one embedded at design-time and, if they mismatch, an error signal is raised.

If no errors occur, the block is sent to the ICAP. After writing the Control Register, the reconfigurable modules synchronous

reset is asserted until the end of the process. If an error occurs, the rm_reset(i) signal associated to the reconfigured partition

remains asserted until a new reconfiguration ends successfully. This ensures to not activate a faulty reconfigurable module.

 5. Wait until the Status Register signals the end of the reconfiguration process or an error (look at the 4 least significant bits).

In addition, the Timer Register can be read to monitor the partial reconfiguration execution time (in terms of bus clock cycles).

In this version, DPRC is not able to generate interrupts to signal errors or the end of the reconfiguration process.

*Note: in Virtex-4 devices programmed using iMPACT tool, the first partial reconfiguration will fail with status code 0x8

(Configuration error), since, at startup, ICAP does not behaves as documented in [1].

1.3 Vendor and device identifiers

The core has vendor identifier 0x09 (Various Contributions) and device identifier 0x001. For a description of vendor and device

identifiers, see GRLIB IP Library User’s Manual.

1.4 Configuration options

Table 3. shows the configuration options of the core (VHDL generics).

Table 3. Configuration options

Generic Function Allowed Range Default

hindex AHB master index 0 – NAHBMST-1 2

pindex APB slave index 0 – NAPBSLV-1 13

paddr ADDR field of the APB BAR 0 – 16#FFF# 13

technology Target FPGA technology
‘virtex4’, ‘virtex5’, ‘virtex6’,

‘virtex7’, ‘artix7’, ‘kintex7’,

‘zynq7000’
‘virtex4’

crc_en Dependable mode selection 0 – 1 0

words_block
Number of 32-bit words in a

CRC block (for Dependable

mode)
2 – 496 10

fifo_dcm_inst Sync / Async mode selection 0 – 1 0

fifo_depth Number of bits used to address

the data buffer 6 - 9 1

cfg_clkmul clkraw input multiplier - 1

cfg_clkdiv clkraw input divisor - 1

raw_freq clkraw input frequency in KHz - 50000

clk_sel

Select between clkraw

(synthesized) and clk100 as

ICAP clock, when configured in

async or d2prc mode

0 - 1 0

To select Dependable operating mode ‘crc_en’ generic must be set to ‘1’. To select Sync mode ‘crc_en’ must be set to 0, while

‘fifo_dcm_inst’ must be set to ‘0’. To select Async mode ‘crc_en’ must be set to 0, while ‘fifo_dcm_inst’ must be set to ‘1’.

In Async or Dependable operating mode, a clock generator and an asynchronous FIFO are instantiated in the DPRC core. The clock

generator is based on clkgen component, while FIFO is based on syncram_2p component, both included in GRLIB. The clkgen is used

to generate the 100 MHz clock for the ICAP clock domain, starting from an external clock connected to the clkraw DPRC input port,

5

while FIFO is used to transfer data between the two clock domains. cfg_clkmul and cfg_clkdiv VHDL generics are used as inputs of

clkgen to synthesize the 100 MHz clock. However, if the system already includes an auxiliary 100 MHz clock, clksel can be set to

bypass clkgen and use directly an external 100 MHz clock, which can be connected to clk100 DPRC input port.

It is worth to note that fifo_depth VHDL generic represents the number of bits used for addressing the syncram_2p data buffer.

Consequently, the true FIFO depth, in terms of 32-bit words, is equal to 2fifo_depth. Moreover, if Dependable mode is selected, FIFO

must be sized in order to accommodate at least one CRC block. Therefore, the following equation must be always satisfied when

defining words_block and fifo_depth generics:

words_block ≤ 2fifo_depth – 16

1.5 Signal descriptions

Table 4. shows the interface signals of the core (VHDL ports).

Table 4. Signal descriptions

Signal name Field Type Function Active

rst N/A Input Reset Low

clk N/A Input System Clock -

clkraw N/A Input Raw Clock input (to synthesize 100 MHz) -

clk100 N/A Input 100 MHz Clock input (if already available) -

ahbmi * Input AHB master input signals -

ahbmo * Output AHB master output signals -

apbi * Input APB slave input signals -

apbo * Output APB slave output signals -

rm_reset N/A Output Reconfigurable modules reset High
*see GRLIB IP Library User’s Manual

The rm_reset signal is used as reset for reconfigurable modules. It allows the logic inside the reconfigurable modules to start from a

known state after the reconfiguration (as suggested in the Xilinx Partial Reconfiguration User Guide [1-2]). Moreover, the same signal

can be used as enable or reset signal of the decoupling logic placed between the static and reconfigurable modules.

1.6 Library dependencies

Table 5. shows libraries used when instantiating the core (VHDL libraries).

Table 5. Library dependencies

Library Package
Imported

unit(s) Description

IEEE Std_Logic_1164 All Type declarations

IEEE Std_Logic_Unsigned All Type declarations

GRLIB AMBA Signals Signal definitions

GRLIB DEVICES Constants Vendor and device identifiers declarations

GRLIB DMA2AHB_Package Components AHB2DMA types and component

declarations

TECHMAP GENCOMP Components Technology constants, clockgen and syncram

components declarations

UNISIM VCOMPONENTS Components ICAP component declaration

TESTGROUPPOLITO DPRC_PKG Components Components declarations

6

1.7 Instantiation

The following example shows how the core can be instantiated.

library ieee;

use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;

use grlib.devices.all;

library techmap;

use techmap.gencomp.all;

library testgrouppolito;

use testgrouppolito.dprc_pkg.all;

entity dprc_ex is

 port (

 clk : in std_ulogic;

 rstn : in std_ulogic;

 ……… -- other signals

);

end;

architecture rtl of dprc_ex is

 -- AMBA signals declarations

 . . .

begin

 -- AMBA Components are instantiated here

 . . .

 -- Dynamic Partial Reconfiguration Controller

 p1 : dprc

 generic map(hindex => 2, pindex => 10, paddr => 10, technology => virtex4, crc_en => 1,

words_block => 10, fifo_dcm_inst => 0, fifo_depth => 5, cfg_clkmul => 6, cfg_clkdiv => 5, raw_freq

=> 50000, clk_sel => 0)

 port map(rst => rstn, clk => clkm, ahbmi => ahbmi, ahbmo => ahbmo(2), apbi => apbi, apbo =>

apbo(10), rm_reset => rm_reset_sig, clkraw => clk_board, clk100 => ‘0’);

end;

7

1.8 Additional documents

[1] “Partial Reconfiguration User Guide – UG702(v14.5)”, April 26, 2013 – www.xilinx.com

[2] “Vivado Design Suite User Guide – Partial Reconfiguration – UG909(v2014.2)”, June 4, 2014 – www.xilinx.com

[3] “7 Series FPGAs Configuration User Guide – UG470(v1.8)”, August 22, 2014 – www.xilinx.com

[4] “Virtex-6 FPGA Configuration User Guide – UG360(v3.8)”, August 28, 2014 – www.xilinx.com

[5] “Virtex-5 FPGA Configuration User Guide – UG191 (v3.11)”, October 19, 2012 – www.xilinx.com

[6] “Virtex-4 FPGA Configuration User Guide – UG071(v1.11)”, June 9, 2009 – www.xilinx.com

http://www.xilinx.com/
http://www.xilinx.com/
http://www.xilinx.com/
http://www.xilinx.com/
http://www.xilinx.com/
http://www.xilinx.com/

