PostgreSQL 9.6.20 Documentation

The PostgreSQL Global Development Group

PostgreSQL 9.6.20 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2020 The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2020 by the PostgreSQL Global Development Group.
Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

Preface xliii
1. What 1S POStZIeSQLT ..cc.eoiiiiiiiiiieiireeeeeete ettt ettt st xliii
2. A Brief History of POStreSQLu........coicuiiiiiiiieiiieiieiieeteeeceteste ettt sve e beesnesne e xliv

2.1. The Berkeley POSTGRES Projectccoccveeiiiiiieniienieiieenieenee e sve e xliv
2.2, POSEEIESOS ..ottt ettt ettt ettt st sttt st et e tae st e enbeebee s xliv
2.3, POSEEIESQLou ittt ettt ettt st ettt st e be e be e sabeebeeaee e xlv
3. COMNVEINTIONS ...ttt ettt ettt sttt ettt et et sb et esae et e beebe et e sbeestesbeeaeenbesbeennesneenee xlv
4. Further INfOrmation........cccoeeviiririeiiinieiencetee sttt sttt st xlvi
5. Bug Reporting GUIEIINES.ecoueeriiiriieiiiiie ittt ettt ettt st esatesane e xlvi
5.1, Tdentifying BUgSoooueeiiiiiieiieteseeeetet ettt xlvii
5.2. What t0 REPOTT c...eeiiiiiieiieiieeeetese ettt ettt sttt et s xlvii
5.3. Where to Report BUZS ...c..cooiiiiiiiiiiiiiiiieeeeeeteste ettt xlix
I. Tutorial 1
1. GEttING STATTEAeeeniiiieieieeiieeee ettt st e 1
1.1 INSEALIALION ..ottt et sttt st sttt et en 1
1.2. Architectural Fundamentals............ccoceriiriiriiiniiiieiieeceeceee e 1
1.3. Creating a Databasececueiuieieriieiieerie ettt ettt ettt et saeesaesbeeneens 2
1.4. Accessing @ Databasecooeeriiriiiriiiiiiieetee ettt 3
2. The SQL LaNGUAZEcovveiriiiiiieieenite ettt ettt st sa e st sttt e sbe e saneesbeenbee e 5
2.1, INEEOAUCTION 1ttt ettt et sttt e bttt et e e st e st e s be et e beeaeenes 5
2.2, COMCEPLS .uveeneeeiieeieeieeeite ettt e et st e b e bt e sat e e bt e sbtesate e bt e s bt esaeesabe e bt esbeesabeenbeesaeesaneen 5
2.3. Creating @ NeW Tablecccoviiiiiiiieieeee ettt 5
2.4. Populating a Table With ROWScccoeiiiiiiiiiiiiiiieeeecee e 6
2.5. QUErying @ TaDIEcc.coiiiiiiiiiiiiiee et st 7
2.6. Joins Between Tables........cocoviiiiiiiiiiiiieeeceereeesest et 9
2.7. Aggregate FUNCHIONS......ccccoviiiiiiieeteteeitete ettt sttt 11
2.8 UPAALES ..ottt sttt et sttt ettt b ettt et sa e bbbt ettt eae e 12
2.9, DCIETIONS ...conveeeenieieeiteteettete sttt ettt sttt sttt b ettt ebt et st sbe et et ebeenees 13
3. AdVANCEd FRATUIES ...c..eeiiiiiiiiiieiietceitctee ettt ettt ettt ettt s ennens 14
3.1 INTOAUCTION «.nveiiiiiiieiieitete ettt ettt ettt ettt eb s 14
3.2 VIBWS ittt ettt sttt ettt et sttt ettt na e sttt et eae e 14
3.3, FOTEIZN KEYS...uiiiiiiiiiiiieeie ettt ettt sttt ettt e bt e sbeeseneenbeenbeesene 14
3.4, TTANSACHIONS ..c.eevveniieiieteeitete sttt ettt ettt et sttt e st e e sbtebeesaesaeesbesbeeesemteeaeenees 15
3.5. WIndow FUNCHONSccuiiiiriiiiiiinieiececeteeceteste ettt st 17
3.6. INNETILANCE ...c.eeiiiiiiiciiecc ettt sttt 20
3.7 CONCIUSION ...ttt ettt ettt ettt sa et esae st e bt eneeaeemnes 21

I1. The SQL Language 22

4. SQL SYNEAX .eontiiieiieiieiete ettt ettt ettt ettt et e ae st h e n et ae e e nesreeanenee 24

4.1, LeXiCal SIUCLUTE.eivuiiiiiiiieteeitt ettt ettt ettt st sbe et e st e sbeesaee st ens 24
4.1.1. Identifiers and Key Words.........ccccceeveeriiiiniiniiniineeeeneeeieeeeiee e 24
1.2, CONSLANLS .e.uveeutieiteeieetee sttt ettt et st e bt e bt e st e e bt e bt e sbeesbe e bt enbeesanesaeeenbeas 26
4.1.2.1. String CONSLANESeeouervereietierieieeeeeeenteeeeete et eee et eesee s eeeseeeneenes 26

4.1.2.2. String Constants with C-style EScapes.........cccceccevirrenerieneneenne 26

4.1.2.3. String Constants with Unicode Escapes.......c..ccccoecvrreenereenenennnnne. 28

4.1.2.4. Dollar-quoted String CONStaNtscceeeeerierreerienieeieneneeee e 28

4.1.2.5. Bit-String CONSLANLSc..ccveueeurririinrerereeeieeestenteeeeeee e e seeaenenene 29

4.1.2.6. NUMEIIC CONSLANLSovereieniietieienieeieniesiteie ettt sttt sbe e 29

4.1.2.7. Constants of Other TYPEScccevereerererienenieieneeee e 30

iii

1.3, OPCTALOTSeeuvieiieeieeiiesite et et e sitesteeabte bt e satesabeesbeesasesateebeesseesssesnseeseenaees 31

4.1.4. SPecial CharaClers........cevueruersiieriieriestiesieeste st et esiteseesbeesbeesbeesaresnseenbeas 31
4.1.5. COMMENLS ...t 32
4.1.6. Operator PreCedeNCeoouiriiiriirieniieiieteee ettt 32

4.2, Value EXPIESSIONS......eiiuiiriiiiiieiienite ettt ettt ettt sttt et e st e bt e st e sateesbeesaeesaeeens 33
4.2.1. Column References..........coceoerieieriinieninieneneeieeeeeteeee et 34
4.2.2. Positional Parameters.........cceevueerierieriiiinienienieeieeitesee et 34
4.2.3. SUDSCIIPLS ..ottt ettt et 35
4.2.4. Field SEIECHONooueiiiiiiieiieiieeiteetee ettt st 35
4.2.5. Operator INVOCAtIONSc..coueevuiriiiiiiieiieie et 36
4.2.6. FUNCHON CallSeoiiiiiiiiiiieeiietete ettt s 36
4.2.77. Aggregate EXPreSSIONS.cccueiviiiiiirieriierieentenite ettt st 37
4.2.8. Window Function Calls...........cceeruiririeninierieieeeeeeee e 39
4.2.9. TYPE CaSS .. s 41
4.2.10. Collation EXPreSSionsccceeeeuertieienieneeniesieeiesieeieete st eee et 41
4.2.11. Scalar SUDQUETIES........covirieiirtieietieiieee ettt ettt 42
4.2.12. Array CONSLIUCTOTS .. .veenvienieriienieeniterteeieeeree st et esreesbeesreesseesbeesaresneeebees 42
4.2.13. ROW CONSLIUCLOTS....cuveeurenierrienieenitentteieesieesiteereesseesieeeteesseesreesmnesaneenbees 44
4.2.14. Expression Evaluation RuUlescccccocoviinininiininiiicccee 45

4.3. Calling FUNCHONS.ccuteiiriieiintieterieeterte sttt ettt sttt et sbe e b e 47
4.3.1. Using Positional NOtationcccueverierireenienenienienieeieneeeene e 47
4.3.2. Using Named NOtAtioNcccevueeieriirieniineeienentenienitetesieete et 48
4.3.3. Using Mixed NOtation......c..ccoeriieiiniirieniinienienenteeseeteseeee et 48

5. Data DefINItIONccoiiiiiiiiiiiicieieiccec et 50
5.1, Table BaSICScouiiuiiiiiiiiicieieireee e e 50
5.2. Default ValUEScccovuiiiiiiiiiiiiiiiiiiictcteeeee et 51
5.3 CONSLIANEScuiiiiiiiiieeiee ettt sttt s 52
5.3.1. Check CONSLIAINESo.ceuiiuiriiiiieiiiiiietiteeee e 52
5.3.2. Not-NUll CONSLIAINLSooviiiiiiiiiiiiiiiiiieieeeeeeese e 54
5.3.3. UnNiqUe CONSLIAINES. ..c.uveruiertieriienieeieenteeteeieesieesteeteesbeesteeteesbeesaresaseenseas 55
5.3.4. Primary KEYS.....cueoiieriirieiiiesieeieetest ettt st s 56
5.3.5. FOr@ign KEYS ...ccuviiiiiiiiiiiiiiesteeeetet ettt e 57
5.3.6. Exclusion CONSraintsccccveiiiiiiiiiiiiiiieiiiicicseceeece e 60

5.4, SyStem COIUMIS ...c..veitiiriieiiieieeite ettt ettt sttt e st st e bt et e sateebeebeesaee 60
5.5. Modifying TabIes........ccoociiriiriiiiiiiiiiieieeeceeeeeeee et 61
5.5.1. Adding @ COIUMN.....cccoeiiiiiiiiiieieic e 62
5.5.2. Removing @ COIUMINcccoeviiiiiiiiiiiiieieeecteeeee e 62
5.5.3. Adding @ COonStraintccuevuieiiiriiiienienieete et 62
5.5.4. Removing @ CONSIAINEccuevuiiiiiriiiieiiiieiceeeete e 63
5.5.5. Changing a Column’s Default Value............cccccoeveninienenineeeceeeeeee, 63
5.5.6. Changing a Column’s Data TYPEccceveruieiinieieieieereeeee e 63
5.5.7. Renaming @ COIUMN ...cc.eeuiiiiiiieiiiieieie e 64
5.5.8. Renaming @ Tablecccoeieiiiiiiiiiniiiiee e 64

5.6, PLIVIIEZES ..ttt ettt sttt et 64
5.7. ROW SECUTILY POLICIES .. .cueeiiitiiiiiiiiiieieeitee ettt 65
5.8 SCHEIMAS ...ttt e 70
5.8.1. Creating @ SCheMAcc.eviiiiiiiiiiitee e 70
5.8.2. The Public SChemaccccoevieiiiiiniiiiiiciciecneeeeee e 71
5.8.3. The Schema Search Path..........c..cccocoiiiiiiiiiiiiiiceece 72
5.8.4. Schemas and Privileges..........coceevuiririineninieniinieneneeeenesteesee e 73
5.8.5. The System Catalog SChemac.ccoceveririininiieninciicneceeeeeceeene 73
5.8.60. USAZE PALEINS ...ccuveveiiiiiiniiiiiieetentceitete sttt sttt 74

v

5.8.7. POTtaADIIILY ...ceuviiiiiiiieieeite ettt st 74

5.9 INNETILANCEceoiiiiiiiiiiicic e 75
5.9 1. CAVEALS ..ot 78

5.10. PaTtIIONINE «..veevieiiiieiieiie ettt sttt ettt et sttt e sbt e sate e be e bt e saneebeebeesaee 78
S.T0.1. OVEIVIEW . 79
5.10.2. Implementing Partitioningcocceceeverierreniinieenieneenenenrereneeeesneeneennes 79
5.10.3. Managing Partitionsccceceeveeririenienieieniieeere e 82
5.10.4. Partitioning and Constraint EXCIusioncccceeevvieveninieninieccnceeenne. 83
5.10.5. Alternative Partitioning Methods..........c..cccceeiiviiriniiiininieencceeeenne, 84
5.10.6. CAVEALS ..ttt ettt ettt st st b e st b e st ebeas 85
S5.11.FOreign Data ..cc..couiiiiiiiiiiiieieetec ettt ettt st 86
5.12. Other Database ODJECLSeerueruerieriieiieieeie ettt ettt see st ae s enee e eaee e 86
5.13. Dependency Trackingccoeereiieienieieieeeee et 87
6. Data Manipulation..........coccoeeueoieieiriniinienieteeetee ettt ettt se et sae st b se e e enean 89
6.1. INSEItiNg Datacoveeviiiiiiiiieiieiiierecet ettt e 89
6.2. Updating Data.........cocevierieieirininiiiciereeeteeseseee ettt s 90
6.3. Deleting Data.......c.coeviviirieiiiiiiiniieteret ettt s 91
6.4. Returning Data From Modified ROWSc.ccoceoviiniiiiiiniiinicecceeeecee, 91
T QUBTIES ..t eetie e ettt e ettt e et e e ettt e e et e e eeateeeetaeeeeaaeeeeaseeeateseentaeeetseeeatsaeenteseeteaeeaeeeeateeenareeenanes 93
T 1 OVEIVIEW ittt ettt sttt ettt st 93
7.2. Table EXPIESSIONScouveiiiieiintieiinieetente sttt ettt ettt et bttt sate e b eae e eanenee 93
7.2.1. The FROM CIAUSE.....c.cevruiriiriinieieiieiieiietiteiee ettt sttt 94
7.2.1.1. Joined Tablesccccoveiiiiininiiieiiieiceeee e 94

7.2.1.2. Table and Column AIASES.......c.ccoerverereerienieienienieieneetesie e 98

7.2.1.3. SUDQUETIESeeuveeniieiieeieeieesiteeteeie et e ere et e st sreebeenbeesebeeseeaeesees 99

7.2.1.4. Table FUNCHONS ..c..cocviriiriiiiniieienieeiceeeetcetcetene et 99

7.2.1.5. LATERAL SUDQUETIESveeuveeiieeieeieeniiesieeieenieesveeieesieesieeeseenaeens 101

7.2.2. The WHERE ClaUSE......ccoeoiimiriiiiiiiiiiiiciicieececetec e 102
7.2.3. The GROUP BY and HAVING ClauSes........ccccecevveieiriririinieicieiiiicsienene 103
7.2.4. GROUPING SETS, CUBE, and ROLLUP ...cccevuiiiieiiiiiiniie et 105
7.2.5. Window Function Processingcecueevuerrieenieniiensieenienieeieesiee e 107

7.3 SEIECt LSS ..ot s 108
7.3.1. Select-List ItEIMSccevieiirieiiiereeeneerete ettt 108
7.3.2. Column Labelsc.coevieiiniiiininieienceceee e 108
733 DISTINCT ueioueeueereeieetenieeeteeteeseesae s esse st e s e aeeaeesae st esnesaeesne st eaeesaesaeennenaeen 109

7.4. Combining QUETIES......cc.ceueeuiriieietieitete sttt ettt et sne s aeeaeesae e enesnees 110
7.5, S0TtING ROWS ..ottt e 110
7.6. LIMIT QN OFFSET.couieiiiieieiieieeteeteete st eeeeie et et saeeeesaesseesaesneeaesaeeseesaesaeennesneas 111
TTVALUES LSS et s 112
7.8. wITH Queries (Common Table EXPressions)ccceeeeveereriereneenienieeieneeeceeeenens 113
7.8.1. SELECT 1N WITH .cuiiuiiiiiiieiiii ettt sttt e s 113
7.8.2. Data-Modifying Statements in WITHcccceveereererierienieeienieeeeneeeeeeeenaea 116

8. DAL TYPES ...t e 119
8.1 NUMETIC THPES ...ttt ettt et sttt ettt nae e 120
8.1 1. INtEZEL TYPES .ecneteiiieiiieiieeitettetee ettt sttt e 121

8.1.2. Arbitrary Precision NUMDETScccoeouiiiiiiiniiieienieeeeeeeecee e 121

8.1.3. Floating-Point TYPESccceruerieriiniieienieeienieeteiesitee et 123

814, SErTal TYPES ...ecuvetieuieiieieeie sttt ettt ettt sb e 124

8.2. MONELATY TYPES ..cuveeieniiriienienieeiteteet ettt sttt ettt sttt et e 125
8.3, Character TYPES ..c..eeueeruiriieienieeiteteeieete ettt ettt ettt 126
8.4. BINAry Data TYPEScevverueeierieriieiinitetesteeteste sttt sttt sttt e 128
8.4.1. bytea HEX FOIMAL.......ccooviuviiiiiiiiiiie et 128

8.4.2. bytea Escape FOrmat..........ccceevieriiiiiiinieniiiieeteete et 129

8.5. Date/TimMe TYPES..cueiriieiiiriieiiteiteree sttt sttt sttt et e st et esbeesabesaneenne 130
8.5.1. Date/Time INPULcccueerieiiiiiiiieeccteteee ettt 132
8.5. 1. 1. DALeS ... 132

8.5.1.2. TIMES ..t 133

8.5.1.3. TIME STAMPS...eeeveriiiriiiiieiieeriteee ettt ettt 134

8.5.1.4. Special ValUesc.ccoceevuivieiiniiiiiiiieieneceeeeeee e 135

8.5.2. Date/Time OULPULc..coeeiiriieieiieiieteeceeese ettt s 135
8.5.3. TIME ZONES ...ccneeeiiiiiieiieeiieeiteeite ettt ettt ettt ettt st e beesaee s 136
8.5.4. Interval INPUL.....c..occiiiiiiiiee e 138
8.5.5. Interval OULPULceeiiiiiiiiiiiiceeee e 140

8.6. BOOLEAN TYPEL ...ueieiiieieeiieieeieete ettt ettt et sttt be et sae e nae e 140
8.7. ENUMETAted TYPES ...eouveeeieiiiiiiiiieiee ettt ettt ettt 142
8.7.1. Declaration of Enumerated TYPeSs........ccceeereeierieriienienieiene e 142
8.7.2. OFAETING ...ttt ettt ettt ettt b et be et sae st saesbeeneeneeene 142
8.7.3. TYPE SALCLY ...ttt b 143
8.7.4. Implementation Details..........cccoieieiiiiiiiniiieneeee e 143

8.8, GEOMELIIC TYPES ..ttt ettt ettt ettt ettt sbe et be s bt sbe et e e e 144
881 POINLS ..ottt e e 144
88 2L LINES ettt e e 144
8.8.3. LINE SEZMENLS.......eeuiiiiriieiirieiieieeitete ettt ettt et eae 145
8.8 BOXES..c.uiieiieiieiiiitstetcte et et 145
8.8.5. PathS ..o e 145
8.8.0. POLYZOMNS.....eiiiiiiiieiiiiiiieeereet ettt st s 146
8.8.7. CICIES . e 146

8.9. NetWOrk Address TYPES....cccueecveerieerieiieeieerite st eteeitesiteete et e steesbesbeesbeesnesnseenne 146
BL0.1L LNET ittt e 146
8.0, 2. CaAr ittt ettt sttt st be e it e et 147
8.0.3. ANEE V8. Ca AT ttitiiiiiiierieeit ettt ettt sttt et e sbt e st st b e aee et 147
8.9.4. MACAAAL tuttetieriieiiteiteete ettt ettt e e sttt ettt e bt e st st e bt e it e sanes 148

810, Bit SHNEZ TYPES cnveteniieiieriieiieeitesite sttt sttt ettt sttt e st sbeesbeesaaesaneenne 148
.11, TeXt SEATCH TYPES ..couveereieriieiiieiterte ettt ettt ettt st et e be e saaesane e 149
Bl L. L. £ SVECEOT totteiieiieetteete ettt ettt ettt st ettt et 149

LT B o b1 oy PSR PRRP 150

812, UUID TYPE -ttt sttt ettt sttt ettt st sttt ebe b sbeneens 151
813, XML TYPE vttt ettt ettt ettt ettt et st sttt sbe et benaene 152
8.13.1. Creating XML ValUescccccoieiiiiiniiiiniiicienieeeeeee e 152
8.13.2. Encoding Handlingc..ccccoiiiiiiniiiiniiiiineceecceeeeseeeee 153
8.13.3. Accessing XML Values..........cccoeiiviiiiiiiniiiiiinicccece e 154

814, ISON TYPES ..ttt et sttt ettt ettt sae sttt ebe b b naene 154
8.14.1. JSON Input and Output SYNLaX.......ccceeveeriuersieeneenienieenieneeneeeieeseeeneees 156
8.14.2. Designing JSON documents effectivelycccceveerereerienencieneneeieene 157
8.14.3. ysonb Containment and EXiSteNCe..........cccceeoveeeeiiieeiie e 157
8.14.4. 550nD INAEXING....ccvioveuieiiiiitiriricecteee et 159

BLL5. ATTAYS .ottt b e s bt et b e sttt e b et s b e et e bbbt eat e e eas 161
8.15.1. Declaration Of Array TYPeS.....cceeeevuerieriereiieieniieiesie et 161
8.15.2. Array Value INPUL.........cooiiiiiiiiiieiisieeseeteeteeee et 162
8.15.3. ACCESSING ATTAYS ..eouviriieiirieriieieetteie sttt ettt ettt et et sbe e i e 163
8.15.4. MOAIfYING ATTAYS...cuirueeiirierienienitetesieete sttt sttt et naeeae 165
8.15.5. Searching in AITAYS......ccocererieriirieiinieieneetetestt ettt s 168
8.15.6. Array Input and OUtPUt SYNTAX......ccueveeriererienienieieneeteneeeee e 169

8.16. COMPOSILE TYPES ..veeuveenereriieriieiieniieeieeieesttesteereesseestteeseeseesseesssesseesseesssessennne 170

Vi

8.16.1. Declaration of COompOSIte TYPES.....ccueerreriuirriierienierieeniienre et eieesee e 170

8.16.2. Constructing Composite ValUes.........ccoveriverriienienieniieniieniesieenieeseenenes 171
8.16.3. Accessing CompoOSIte TYPES .eevvveruvirriienierieriieniienie ettt 172
8.16.4. Modifying CompoSite TYPES.....uervirrrierieriiiriieniienieeieenite st e e 173
8.16.5. Using Composite Types in QUETIES........cevcuerrvierierierrieeniienienieenieesieenaes 173
8.16.6. Composite Type Input and Output SYNtax.........ceceecvevrveeenerveeneneecnennene 175

817, RANEE TYPES ettt e 176
8.17.1. Built-in Range TYPEScoceevieimirieiiirieienecieeseeeteeeee e 176
8172 EXAMPIES.....couiiiiiiiiiiiieeieneeeteetete ettt s 177
8.17.3. Inclusive and Exclusive Boundsc..cceceeviiniiniieniiinienicnieeieceeee, 177
8.17.4. Infinite (Unbounded) RaNges.........cccoeieriiririeienieeeeeeere e 177
8.17.5. Range INPUt/OULPUL.......cooeiiiiiiiiriiiiieteete ettt 178
8.17.6. Constructing RanGeSc.cecererverieiririniinieieiceeeeeseseeeeeeee e 179
8.17.7. Discrete Range TYPEScceeeruervereiieiririinieieieeeeeiese st 179
8.17.8. Defining New Range TYPESc.cecvevuirieriiniiierieniieieeeeesee e 180
8.17.9. INAEXING ..ttt st s 181
8.17.10. Constraints on Ranges...........cceeeeriirierieniiieiieniieiesieete e 181

8.18. Object Identifier TYPES ...cvevueeeeriiriieienieeiere ettt ettt 182
819, PEIST TYPC .ttt bttt 184
8.20. PSEUAO-TYPESenveitentiriieiiesieeite ettt et sttt sttt 184
9. FUNCtions and OPETALOLScecuerueruierieniieienieeterie sttt sttt site sttt estesb et e bt sbeeneesaeeaenaeas 186
0.1. LOZICAl OPEIALOLS «.....eeuiiiieniiiiriieienieetenteeite ettt sttt sat ettt e saesatenaesbeesnenaeene 186
9.2. Comparison Functions and OPEratorsc..ceceevererienieneenienennieneneenieneenenienne 186
9.3. Mathematical Functions and OPerators............eceereerieerueeneeneesireeneennesseensesneeens 189
9.4. String Functions and OPEratorsSeceereerieerieeneerueeieenieeneesseesseesseesseessessseens 193
0.4, 1. FOTTMAL tuvtetierteeteeritert e et et estteste et e s it e e sbeeabeesbtessbesaseebeesssesaseenbeesssesnseenne 208

9.5. Binary String Functions and OPeratorscoceerueerverrieereeneesieenieeneesseenieeneeens 210
9.6. Bit String Functions and OPEeratorsceeverrieerierieriieeniientesieenieenieesveesieenieens 212
0.7. Pattern MatChiNgcccceeviiiiiiiieiieiie ettt sttt sttt sbe e st e e b 213
9.7 1. LIKE ttiiiiiiiieieetiteee ettt st 213
9.7.2. SIMILAR TO Regular EXPressionscceceevveenienieniieeniienienieenieesieeieenne 214
9.7.3. POSIX Regular EXPressionsco.eieerierieriienienienieenieesieeeeesiee e seeenne 215
9.7.3.1. Regular Expression Detailscccccooeerierieeniiniienneenienieeceeene 219

9.7.3.2. Bracket EXPIesSionsccceevverieerieeniienieeieenee sttt 221

9.7.3.3. Regular Expression ESCapes........c.cccceceevirienininciinineciiceenene 222

9.7.3.4. Regular Expression MetasyntaxX........cccceeeveevveneecieniieneeneencennennens 224

9.7.3.5. Regular Expression Matching Rulesccccocceciiieiininnenennen. 226

9.7.3.6. Limits and Compatibilityc..ccccceirvieniriiineniniiieeccecceeene 227

9.7.3.7. Basic Regular EXpressionscccccoeeveeviiieieniniienicicncnceeenne 228

9.8. Data Type Formatting FUnCtionsccccoueceririnenenieieinenineneneeeeeeiesie e 228
9.9. Date/Time Functions and OPErators.........c.cccecerereruerierereenuenenenseeeeeesesenuennes 235
9.9.1. EXTRACT, AT E_PATE titiiieiriieeeeiiiieeeeeiteeeeeeettereeeeetreeeeesesreeeeeessreseeeennnnes 241

LS e R o o o U b o L RO URT ST TRRPRR PR 245
9.9.3. AT TIME ZONE....ciiiiiiiiiiiiiiiiiienie et sic ettt s e s 245
9.9.4. Current Date/TIimecceevuirieeiiiniiieesitee et 246
9.9.5. Delaying EXECULION.cc.eeriiriiieniiiieiesiteesieetee et 248

9.10. Enum Support FUNCHONSc..cotiriiiiieieniieiieieeiteie ettt 249
9.11. Geometric Functions and OPerators...........cocceceevererierieneenienieeieneseenieneeeenieene 249
9.12. Network Address Functions and Operators..........c.ccecuevereeriereenieneneenenenseenenne 254
9.13. Text Search Functions and Operators............ceccevererierienierieneenieneneeneseerenieene 256
9.14. XML FUNCHONS ..ottt sttt s s 261
9.14.1. Producing XML CONtent..........coceeueruerieienerienenienienieerenieeeeneeseeeeennens 261

Vii

9.14.1.1. XMLCOMMENT 1vveeeeerirrreeeeeiirreeeeeeirreeeeesireeeeeesiareeeeeessreseeesireeeeeenns 261

9.14.1.2. XINLCONCAL teuveeteeriieeieeieesite et eteesiteste et esbeesbe e bt enbeesabeebeebee s 262

9.14.1.3. XIMLELEMENT weerrtieriiieieeieeniteeteeieenite et eie et steebeesbeesateeseebee s 262

9.14.1.4. XINLEOTEST teteetieriieeieeitesite ettt ettt et ste ettt st ebeeaee s 264

0. 14.1.5. RIMLIPL cuviuiiiiiiiiiiiieiiciieee e s 264

9.14.1.6. XINLT OO teueiruieiieeriteeieee ettt ettt sttt et et e b b 264

.14, 1.7, XIMLAGG ctteerreeeriireerrieeireeesteeetreesesreesseaessseeesssseessseeesssesasssesensses 265

9.14.2. XML PrediCatesccoveeierriienierieeieeniteeie ettt sttt 266
9.14.2.1. IS DOCUMENT ..ecuteutieueererieenrenieeeeeteeneeeesreenesseeene s eneenesaeennesnens 266

9.14.2.2. IS NOT DOCUMENT....ccuirtiiiuiimiiriineitiietesseiestesse e 266

9.14.2.3. XMLEXTISTS uteiuieueeiieieeeesieenesieeeete et eae st ene s e sseeneeaesaeene s 266

9.14.2.4. xml_is_well fOTrMEQ .iiiiiiiiiiiieiiiirrieeeeeeeeeeeeeeeeeeeeeeannns 266

9.14.3. Processing XMLcccccevivirinienienieteiniineneeeeeiteie et saene 267
9.14.4. Mapping Tables to XML........ccccceoeirinineneieieintne et neene 268

9.15. JSON Functions and OPEIatorscceeveeeuirerreruenueueteenensessessenseeeessessessennes 272
9.16. Sequence Manipulation FUNCHONSc..ccceciririninenierieiienineeeeeeeeee e 281
9.17. Conditional EXPreSSiOnsccceceririirieieieiriininienieieeetee et stesieseeeeseeveeae e saennen 283
0. 17,1 CASE ettt sttt et s sttt 283
9.17.2. CORLESCE vttt sttt sn s eas s sa s 285
0173 NULLIE ottt 285
9.17.4. GREATEST aNd LEAST....ciiiiiiiiiiiiiiiiieiiieiieenc et 285

9.18. Array Functions and OPEratorscoeecueruereeriererienienieienieeeesiesieeniesieesenienne 286
9.19. Range Functions and OPerators...........co.cecueruereerererieneneenienieeeenieseeniesieenenienne 289
0.20. Aggregate FUNCHONSc..cocuiririiieiietenieetete ettt ettt ene 291
9.21. WIndow FUNCHONScouiiiiiiiiiiiiiiicicicteeeseseeeee e 300
0.22. SUDQUETY EXPIESSIONS ...eeeruvieiieiieriiieieeniiesiieesieenitesitesteesaeesseesseeseenseesssesnsesnseens 302
0.22. 1. EXISTS ittt sttt st 302
9.22. 2. TNttt e 302
9.22.3. NOT INuuiiuiiiiiiiiiieiete ettt st 303
9.22.4. ANY/SOME ...uiuiiiiiiiiiiiiciieie sttt st 303
9.22.5. ALL ittt e 304
9.22.6. Single-row COMPATISONeevvierreriieniienieeieeniteste st esteesreeeeesbeesreseeenne 304

9.23. Row and Array COMPATISONS ...c..eeruverrueeriieriieriieeniteniteeieesieesieesteesseesseesseenseesseens 305
0.23. 1 TNttt ettt bbbttt s et bttt et naene 305
9.23.2. NOT INuetiiiruieieieeieeteeitete et eeesae st st e e st e e et st enesae s e st eaeeaesaeennenaeen 305
9.23.3. ANY/SOME (AITAY) .veervveeurerreeniieneerieenieestesseesseestesseesseessesssessseessessseenne 306
9.23.4. ALL (AITAY) cvveeuveereeniteeieeteesiteete et esttesitesbeesbeesatesateesbeesasesateeabeesasesaneenne 306
9.23.5. Row Constructor COMPAriSON.........cceeueeueruieieruerierenieerenreeeeseeseenennens 306
9.23.6. Composite Type COMPAriSON.........cccueruieiiruieieeriirieieneeresie e e e 307

9.24. Set Returning FUNCHIONScccectririirienieieiniinineneeteeetee sttt 308
9.25. System Information FUNCHONScccouerieirinininiiicicieenceceeceeeecee e 311
9.26. System Administration FUNCHONScc.cceceriririrenierieiiinineeeeeeeeee e 327
9.26.1. Configuration Settings FUNCHONS.........cccccvevverieiieinineninieieieeeeseseneene 327
9.26.2. Server Signaling FUNCHioONScceceririnenienierininine e 328
9.26.3. Backup Control FUNCLIONSccccveiriniinenieieieinene et 329
9.26.4. Recovery Control FUNCHONScccevvevieiininiinieiieiesiceeeeee e 331
9.26.5. Snapshot Synchronization FUNCHONScccceceererienenieiiininiencnceeene 333
9.26.6. Replication FUNCLONSccccocuiriiiiniiniiiinieieneeeeeseeeeeee e 334
9.26.7. Database Object Management FUnCtions.........c..cecceveveeveneniencncenennen. 338
9.26.8. Index Maintenance FUNCIONScccecivuivierieieieinirienieieieiceeceesieene 340
9.26.9. Generic File Access FUNCONS...........ccoeiiiriiieiieinineniciciciceececeene 341
9.26.10. Advisory Lock FUNCHONS......c.c.cecvierieeieeiieniiecieeieesieeeee e sve e 342

viii

0.27. Trig@er FUNCHONS ...cccueeriiiiiiiiieiieeiie ettt sttt sttt e e b 344

9.28. Event Trigger FUNCHIONSccoeerieriiiiieiieniie ettt ettt ettt e 345
9.28.1. Capturing Changes at Command End..........cccceevueriiiniiniiniiinienienieenne 345
9.28.2. Processing Objects Dropped by a DDL Commandcoceeveeriennenne 346
9.28.3. Handling a Table Rewrite Eventcccccoeoeiniiniiniiinienienceieeeieeieee 347

10. TYPE CONVEISION.......euieuiiiieiiitietietenttetenie ettt ettt saeene b e seeesaesaeesnesaesaeesnesueennenneene 349

TO. L. OVETVIEW ..ottt ettt ettt ettt e b e st st st e bt e s bt e sabeebeenbee s 349

10.2. OPETALOLSonviiieiiieiierenieetete ettt ettt ettt ettt e st s e s e ne e enesaeenesnees 350

10.3. FUNCHOMS <.ttt sttt ettt ettt et sat e st esbeesaeesabeebeenbee s 354

10.4. Valte StOTAZE......ceeruieiiiiiiiiieiieie ettt sttt s s 358

10.5. UNION, CASE, and Related CONSIUCES.uuveeeiiriieeeeeeeeeeeeiiieieeeieeeee e e e eeeeeeeennaes 359

L1 TIAEXES ..ottt ettt ettt b et e et e s et e e st e te s bt e tebees e et e eseeneesaeeneesesneensenseane 361

T1.1. INEOAUCHION ..ttt ettt ettt s aesne s 361

L1.2. TACK TYPES.cuttniatietieieiteeteste et ettt ettt ettt ettt ettt et s bt et e st eneenaesaeeaesnean 362

11.3. Multicolumn INAEXESceveruieuieiieiieierie ettt 364

11.4. Indexes and ORDER BYcocuirieeuieriirieeienieeitetesttentesteeneestesstesesseensesseeseenaesaeensesseas 365

11.5. Combining Multiple INAEXEScoceeriirerieriinieiereetee et 366

11.6. UNIQUeE INAEXESvevienieiieiieieeieeeeiee ettt ettt ettt et st 367

11.7. Indexes 0n EXPreSSIONSccueeeeriirieeriiniiienieniteiesieeteste sttt 367

11.8. Partial INAEXESc.coeeviiriiiiiieeiieieiceeeetee ettt s 368

11.9. Operator Classes and Operator Familiesc..cccveevenenieneniniinienienciceeee 370

11.10. Indexes and CoOllations..........ceeevuirerriererienienteieneetesee ettt s 372

11.11. IndeX-ONLy SCANS ...cocverviririiiniiiiinieetereeiteeett ettt sttt 372

11.12. Examining INdeX USAZe........cocuevuireiriiririeniiniieienieeeenieetetesiteteie et 374

12, FUll TEXE SEAICH ..ccuviiiiiiiiieiieiieeetesteete ettt ettt ettt naeene 376

121 TNEOAUCLION ...ttt sttt st ene 376
12.1.1. What Is @ DOCUMENE?.......ooeriiiiniieiiniieienieneeeneetee ettt 377
12.1.2. Basic Text MatChingcccocveevieenienieiiieieeieesieeieeiee et 377
12.1.3. CONTIGUIALIONS ...ueeeriiiiiieiieniie ettt sttt st ettt et e st e sateenbeesanesaees 379

12.2. Tables and INAEXES.......cccevueririenirieieniiniettecete ettt 380
12.2.1. Searching @ Table..........cooieriiiiiinienie ettt 380
12.2.2. Creating INAEXES ...cc.veevvieriieriiiieeieerite sttt ettt et 381

12.3. Controlling TexXt SEarch........ccceeveiiiiniiiiiieeeeee et 382
12.3.1. Parsing DOCUMENLSccoeouieieniirieieniieieieeeeie et 382
12.3.2. Parsing QUETIESccueeueeieruieieniinieetenieeeete ettt s 383
12.3.3. Ranking Search Resultsccccoceiiiiiiiniiiiniiceccceccceeee 385
12.3.4. Highlighting ReSUltscccooiiiiiiiiiiiiiiicc e 387

12.4. Additional FEAtUTIESc.coeveiriiiiiiiiiiiieeieeieetteteee ettt st 388
12.4.1. Manipulating DOCUMENLS.........ccccocieiiiriiiiiiiiieie e 388
12.4.2. Manipulating QUETIES.......c..coerveuereeriierinienieneeeeeee e sreteseeeneereeresseneens 389

12.4.2.1. Query ReWIItINGcc.covevieieieiiiriiieictceeeeene et 390
12.4.3. Triggers for Automatic UpPdateseceeeruerveeririerenenienreieenenenennens 392
12.4.4. Gathering Document StatiStiCSccceeerererierieeririerenreniereeeeeresresrenaens 393

12,5, PATSEIS . c.eeieiiiiiieiteee ettt ettt ettt st e b e st s 394

12.6. DICHIONATIES.ceeeneietieteiteeiteteet ettt sttt ettt ettt e sttt et s bt et e st eaee bt saeeaesbeas 395
12.6.1. StOP WOTAS ...ttt sttt 396
12.6.2. SIMPIe DICHONATY ...ouvetieiiiiieiieniiiieiesteee ettt s 397
12.6.3. Synonym DiCtONAIYccceeieieririenieniieienieetene sttt 398
12.6.4. Thesaurus DICHONATYcccuevverteririeneniieieieetene sttt 400

12.6.4.1. Thesaurus Configurationc.ccoceeeuereeierienennieneneeneneesienienne 401
12.6.4.2. Thesaurus EXampleccccocevveeriniinininiinineeenceeeeneeieene 401
12.6.5. ISPEll DICHONATY....cueeruieriiieiieiieeieeieenieeeite et et esiteeebeesaeesaeesebeeseesanesanes 402

ix

12.6.6. SNOWDAIl DICHONATYeevviiiiiiiieiieiie sttt 405

12.7. Configuration EXample.........cceoviiriiiriiiniinieiieeieenie ettt e 405
12.8. Testing and Debugging Text Searchcoccoeveevieniiiiiennieniiiieeceeeseeeeeene 407
12.8.1. Configuration TESHING.....cceevvirrierrieniiiieeieeite ettt 407
12.8.2. ParSer TESTINZ .. ccouveeiieiieiieniie ittt sttt ettt ettt et 409
12.8.3. Dictionary TeStNG......c..cecueeuieeenirieieniieieteeeee et 410

12.9. GIN and GiST INdeX TYPESoeueeriruieiiiirieieeieeesteeeee et 411
12.10. PSQL SUPPOTLL....eeiniiiieiiiieieteeeete ettt et s 411
12,11, LAMIEATIONS . ..eeuveeiieriteeieeieesete ettt ettt et e sb e st sat e et esbtesate st e sbeesaeesabeebeenbee s 414
12.12. Migration from Pre-8.3 Text Search..........cccocociiiiiiniiininiiicceceee 414
13. ConcurrenCy CONLIOL.....couiiiiieiiiiiirieeeet ettt et e e s 416
13,1, INEOAUCHION ..ttt ettt ettt e et e e s aesnean 416
13.2. Transaction ISOIAtIONc.ccuieieiiiriieiiiieese et 416
13.2.1. Read Committed Isolation Levelccccooieiiniiiininieiiieececee e 417
13.2.2. Repeatable Read Isolation Level...........cccoceveveiiriininininicnieieieincnene 419
13.2.3. Serializable Isolation Level...........ccoocoiieiiniiiiniiieneeee e 420

13.3. EXPLCIt LOCKING ..ottt 422
13.3.1. Table-1eVel LOCKSc..coteiirieieriiieiesieeeeeteee et 422
13.3.2. ROW-1EVEl LOCKSooviiiiiiiiieiieetee et 425
13.3.3. Page-1evel LOCKScc.coiiiiriiieniiiieiesicecetee e 426
13.3.4. DEadIOCKS.coueeieriieieniieteteetee ettt s 426
13.3.5. AdVISOIY LOCKS ...cuiiiiiiiiiiiiiieicteest ettt 427

13.4. Data Consistency Checks at the Application Level.........cc.ccoccoevvininienininncnnen. 428
13.4.1. Enforcing Consistency With Serializable Transactions............c.ccccveuee 429
13.4.2. Enforcing Consistency With Explicit Blocking Lockscccccveecvenene 429

13,5, CAVALS. c..eoutiieeiteieeieeteettet ettt ettt ettt et sa ettt sb et sbe st ae b eene b ene 430
13.6. Locking and INAEXES.......ccooueeiieriiinieeiieiteniie ettt sttt st sieesete b eaee s 430
14, PerfOrmance TIPS ...eveeeveeruierieeieeiiesteeteestte st ete et et e st steesbaessbessbeesbaesasessseenbeesasesnseenne 432
14.1. USING EXPLATN teeruteesueerueerreerieesieesteerseesseesssesssessseesssesssessseesseessesssessseesssesssesseess 432
14.1.1. EXPLAIN BaSICS ...veiiiiiiiiiiiiiiiiciciccccccc e 432
14.1.2. EXPLAIN ANALYZE iiciiiiiiiiiiiieieieie ettt st ene e 438

T4, 1.3 CAVEALS ..ottt ettt ettt ettt b e s 441

14.2. Statistics Used by the Plannercccoeceeiiiniinieniiiiienieiceeecesee e 442
14.3. Controlling the Planner with Explicit JOIN Clauses.......cc.cccecuervveeneeneerieeneeenneen. 444
14.4. Populating a Databasecc.ceceeeuirieiieninienienieieneeeenie et e 446
14.4.1. Disable AUtOCOMIMIL.....cccceviirierriierieiiieieeiee ettt 446
14.4.2. USE COPY .utitieuieieeiiesieetteteetteteste st este st e e teenteseesneesesseenseseeneensesneensesnean 446
14.4.3. REMOVE INAEXEScouviruiiiiiiiiiiieeieete ettt 446
14.4.4. Remove Foreign Key Constraintscocceeveerieenersieenienieensieeneeseenaes 447
14.4.5. Increase maintenance WOTK_IMEM ..ciiiiiiiieieiiieeeieeeeeeeeeeeeeeeeeeeeeeeeanennans 447
14.4.6. INCTEASE MAX_ WAL ST ZE weiiiieieeieeeeeeeeeeeeeeeeeeeeee e e e e e e e e e eeeeeeeeereeeeeeeeeeeens 447
14.4.7. Disable WAL Archival and Streaming Replicationccecceeerceeenen. 447
14.4.8. Run ANALYZE Afterwards.......ccceeceerueriieieniieienie e 448
14.4.9. Some Notes AbOUt PZ_dUMPc..ecveirirrirerienieieireresretereeeeereereseneene 448

14.5. Non-Durable SEttingsc.ceeeeuerieirinenienieieineneseeietetee ettt s 449
15, Paralle]l QUETY......ccoueiuiiiiiieiieieeitete sttt ettt st b ettt sbe et e bt e bt e saesbeennenbeene 450
15.1. How Parallel QUEry WOrKSccccoveeriiririenieniieienieeteneeteesi e 450
15.2. When Can Parallel Query Be Used?........cocooevieiiiniiiininieeniieeeeeee e 451
15.3. Paralle]l PIAnScccoiivieiiiiiiiiece ettt e 452
15.3.1. Paralle] SCanscoeevuerrieieniiieneiteest ettt 452
15.3.2. Paralle] JOINS «..cooueruieiiniieiiniieienceeeesteee ettt 452
15.3.3. Parallel AEregationc..cccuevueeeeiereenienienienienieeienieeeeneesieeneesieeenenieene 452

15.3.4. Parallel P1an TiPs ..ccceeveerierieiieeieerte ettt ettt 453

15.4. Parallel Safety.......ccccociriiiinirieciieteeeeteecet ettt st 453
15.4.1. Parallel Labeling for Functions and Aggregates........c..cccceveeveerucrcennennen. 453

I11. Server Administration 455
16. Installation from SOUTCE COAEcoviiriiriiiiriiriieiteieeteeeete ettt 457
16.1. SROTE VETSION ..ttt ettt ettt ettt st sae e st st e b eaee s 457
16.2. REQUITEIMEILScouviiienieiieiieiieieete ettt sttt et et s ne s 457
16.3. Getting The SOUICE.......cc.eiiiiieieiiieee e e 459
16.4. Installation ProCedUure........cccoviiiiieriiiiniiiieeeeiteteee ettt 459
16.5. Post-Installation SEtUP.........ccoeceeiiiiiiiiiiiiiiiee e e 469
16.5.1. Shared LibDrariesccceecueeuieienieieriesiieie sttt 469
16.5.2. Environment Variablesccooiiiireiieiienieene e 470

16.6. Supported PlatfOrmsc.ooieieiiiieiiieeee e 471
16.7. Platform-specific NOLEScc.eeieriirieierieeiteeet ettt 471
LO.7. 1. ALX ettt sttt sttt s 471
16.7.1.1. GCC ISSULS ...cueenteiienieiieiienieeiteee sttt ettt sttt st e e b e eae 472

16.7.1.2. Unix-Domain Sockets Broken...........ccoceeeerereenencnienenensenene 472

16.7.1.3. Internet Address ISSUES.........coceeverierieninienineeienceteeseeieiee 472

16.7.1.4. Memory Managementccoceveevienierienieneeneeneneenieneeseenienne 473

160.7.2. CYZWIN .ttt ettt st sttt ettt ee b 474
LO0.7.3. HP-UX ..ottt ettt ettt s 475
16.7.4. MACOS ..ottt sttt ettt s 476
16.7.5. MInGW/Native WINAOWScoevieiinirieninieieniieteneeeeneesieeniesieerenienne 476
16.7.5.1. Collecting Crash Dumps on Windowscccccceeeeveeneenvensnennne 477

16.7.6. SCO OpenServer and SCO UnixWare..........ccceeeeveerciieneeneenieeneeneennnes 477
16.7.6.1. SKUNKWATEcc.eorviriiiiiniieiiniineenieneeteeetete ettt 477

16.7.6.2. GNU MAKEc.oeoruiriiiiiiieienientenieneetesteeieete et e enenne e 477

16.7.6.3. REAAINE.cveoiiiiriiiiiiieiee ettt 477

16.7.6.4. Using the UDK on OpenServer............cocceeveevieivieeneeneenienseenne 478

16.7.6.5. Reading the PostgreSQL Man Pages........ccccccoovvrvieeieiniiniennennne 478

16.7.6.6. C99 Issues with the 7.1.1b Feature Supplementcccceeeueenne 478

16.7.6.7. Threading on UnixXWarecccccoceevienreeieniineenencneeienecrennene 478

LO0.7.7. SOLATIS ettt ettt sttt ettt ettt 478
16.7.7.1. Required TOOISccceievuiriirieniirieieeeicceeeeere e 479

16.7.7.2. Problems with OpenSSLccccociiiiiiiiiiiiiicereceee 479

16.7.7.3. configure Complains About a Failed Test Program 479

16.7.7.4. 64-bit Build Sometimes Crashes..........ccccceeceeriernenneenieniennennne 479

16.7.7.5. Compiling for Optimal Performance.............cccecceverienenienennenne 480

16.7.7.6. Using DTrace for Tracing PostgreSQL.........cccceceviriinincenenen. 480

17. Installation from Source Code on WINdOWScceerieriiiirnieninieeeeee et 481
17.1. Building with Visual C++ or the Microsoft Windows SDK.............ccccocenvnenen. 481
17.1.1. REQUITEIMGILS ..cuveeienietieiieiieiienteeieete st ete e eate et saeetesbeeaee st eaeenaesaeeeesbeas 482
17.1.2. Special Considerations for 64-bit Windowsccccceceeveriniencrcenennen. 484
17.1.3. BUILAING .ottt sttt s 484
17.1.4. Cleaning and InStallingcccoceriereniiiieninienie e 484
17.1.5. Running the Regression Tests.........ccccveevieririenenieneneeieeeceescee e 485
17.1.6. Building the Documentationcoeeevereeieneneenenenienencene e 485

17.2. Building libpq with Visual C++ or Borland CH++.....coceeveriininiiiiiiniiciceeee 486
17.2.1. Generated FIlescccoveiiriiiiniiieienieeieeeeee et 486

18. Server Setup and OPETAtiONc.cccverveeiiieriierieeieeriteseeete et eseesresreessaesseessseenseesanessees 488
18.1. The PostgreSQL USEr ACCOUNLc..covuierieriiieniienieeieeiterteeieeteeseeesiee e eaeenaee s 488

Xi

18.2. Creating a Database CIUSLETcevuerierriienienieeieerie ettt st st 488
18.2.1. Use of Secondary File SYStemS.......ccccevvveerieiriiirieniieeiienieeieeieenieesiee e 489
18.2.2. Use of Network File SYStemscccceevviierieiniienienieeieerieeeeeieeieesee e 489

18.3. Starting the Database SETVET.........cccueevueiiiiriiiieiienieeeeiteee et 490
18.3.1. Server Start-up Failuresccceeeevviiiiiiiiiniiieeeeieeeeeeeeeee e 492
18.3.2. Client Connection Problemscc.coceecerieiininiineninicieecceceeeee 492

18.4. Managing Kernel ReSOUICES..........ccccecuiriiriiniiniiiiiceccccccecrceeece e 493
18.4.1. Shared Memory and Semaphoresccccoceeceevirieneneeiienieeeeneeneene 493
18.4.2. systemd RemoveIPC ..ot 498
18.4.3. ResOUICe LIMILScocuiriiiriiiniiiiieeiieie ettt 499
18.4.4. Linux Memory OVErCOMMIL..........ccceruiiiiriieiiinieiieieneeeeie e 500
18.4.5. Linux Huge Pagesc.cooiiriiiiiiiiiiiieceeeeeeeeteeeeee e 501

18.5. Shutting DOWN the SEIVET........ccciiiiiriiiiiieieeee ettt 502

18.6. Upgrading a PostgreSQL CIUSETc.cccvueiieriiriieiieieeeereeeee st 503
18.6.1. Upgrading Data via pg_dumpall...........cccoviriiniiiiininiiinieececee e 504
18.6.2. Upgrading Data via pg_upgradececeveeiieneiienenieieseeeee e 505
18.6.3. Upgrading Data via Replication............ccceveevieneiienenenieniencee e 505

18.7. Preventing Server SPOOfINGcciveerieririenienieiesie ettt 506

18.8. ENCIyPtion OPLIONS. ..ccuveveriieiieiieiiniietesieeitente sttt sttt sttt te st eaeenae e enae v 506

18.9. Secure TCP/IP Connections With SSLc.cceciiinininieiienininieiceceeeese e 507
18.9.1. Using Client CertifiCatescocereeruerierieniniieneseeniesieeeenieeieeneeseeeee e 508
18.9.2. SSL Server File USagecccevueririenieniieiinieeienieneeenieeteieeeeee e 509
18.9.3. Creating CertifiCates..........coeeieririenienieienieetene ettt 509

18.10. Secure TCP/IP Connections with SSH Tunnels........cccccocevenievcnenveencncenennen. 511

18.11. Registering Event Log on WindOWScccceerierieriiiiniienienieeieeneesee e 512

19. Server CONTIGUIATIONeovuierieriietiesteete et e ste ettt e stesteebeesbtesbeebeesbeesaressseenbeesssesnseenee 513

19.1. Setting Parametersc.cevueerueeriienieeieeitesieeteesteesitesteeteesieesbeesseesbeessseeseenaeens 513
19.1.1. Parameter Names and Values.........cccccoeevverirviencnieneneniicnineencneeiennes 513
19.1.2. Parameter Interaction via the Configuration File.........cccccceceviiiniiennnnnee. 513
19.1.3. Parameter Interaction via SQL.........cccccveiiiiiiiiieeieeccee e 514
19.1.4. Parameter Interaction via the Shell...........c..coccooiiiinininiininiiieenee 515
19.1.5. Managing Configuration File Contents...........ccocueevuerviienieniiensieeneeneennne. 515

19.2. File LOCALIONSeouviiieniiiieiieiieiecieetcet ettt ettt s 517

19.3. Connections and AuthentiCation...........c..cecveruereecienierieneneeneneereere e 517
19.3.1. Connection SELHNEScceeuieeeruirierieniieietieeenee sttt s 518
19.3.2. Security and AuthentiCation............cc.eeeecieriiecieneieenieneeree e 520

19.4. Resource CONSUMPLION.........cc.eeiiriiriierienieereteeie ettt et s esaesaeenesnees 522
TO.4. 1. MEIMOTY ..ottt sttt s s 522
19.4.2. DISK .ttt ettt 525
19.4.3. Kernel Resource USage.........ccccoiiieviiiiiiiiiiiiiinie e 525
19.4.4. Cost-based Vacuum Delayccccooiiiiiiiiiniiiiiiiiicccceee 525
19.4.5. Background WIIeT.........ccceciriierieirininrinenicieeeeee ettt 526
19.4.6. Asynchronous Behavior.........c..cceceirininenienenniinincncicicieeeceeneeene 527

19.5. Write ARad Lo ..c..cveuiiiriiriiicieieieeeecete ettt s 529
19.5.1. SEHNES.c.evieiiriiteieieeeiteere sttt ettt 529
19.5.2. CheCKPOINES. ... ceruiriieniitieiietietente ettt sttt s saeas 533
19.5.30 ATCRIVINE ..onviiiiiiiiieiet ettt s 534

19.6. REPLICALION.euieiiiieieitieiteteet ettt ettt ettt et sae e ae i 535
19.6.1. Sending SEIVET(S)ccverreeuerririerierienienteetenteeteneesieeee sttt eiee e saeeaesaeas 535
19.6.2. MASLET SETVET ...ttt ettt st 536
19.6.3. Standby SEIVETScccuerrieiiriirieniiiteienieetese ettt sttt e 538

19.7. QUETY PIanningcoccviiviiiiieiiieiieieecie ettt ettt e s e sebeebeenaee s 539

Xii

19.7.1. Planner Method Configuration...........ccecueeveeenieenieniieesiienienieeieeieesee e 539

19.7.2. Planner Cost CONSLANEScc.eecveruereerieriieieniieeenieneerenieerenreeseenaesaeenennens 540
19.7.3. Genetic QUETY OPUMIZETeovveeruierieriieieeiee st eteeiee st eee et e b e siee e 542
19.7.4. Other Planner OPtONS.ccoveiierrienieiiieieeiee ettt e 543

19.8. Error Reporting and LOZZINGcccueeieiriiiniiniiiiieniie ettt 544
19.8.1. Where TO Lo ..c..coueeiiiiiiiiieeeeeeieeeeee et 545
19.8.2. WHhen TO Lo ..ot 547
19.8.3. What TO LLOg «.eeeveeieieeiieieet ettt s 549
19.8.4. Using CSV-Format Log Outputc..cccceeieiieniiieneninieieeeieecenenene 553
19.8.5. Process Titlecuuiieuiiieiiieciieeciee ettt 554

19.9. RUN-UME SEALISTICS....uvvieeiieeeiieeeiieeeieeesieeeeteesteeetteeeeteesareessseeesssaeessseeensseeenne 554
19.9.1. Query and Index Statistics COIECLOTccverueererererenieieeeeeenenrenene 554
19.9.2. Statistics MONILOTINGccccveririeieieiriintinienieneeeeeee ettt naene 555
19.10. Automatic VACUUMINE ...c..covevveveureuiriinrenieieeeiteientestetetentene et sesseeeneeseenesaesaennes 555
19.11. Client Connection Defaultsccccecveevieeiieiiienieeieeeeceeeie et sae e 557
19.11.1. Statement BENaVIOT........c.cccuieviieiierieciieiecee et 557
19.11.2. Locale and FOrmattingccoccoceevierieieniniienie e 562
19.11.3. Shared Library Preloadingccooeveeoieniniieniiiinieneeiececee e 563
19.11.4. Other Defaults.......cccoiiviiriiiiniiieesieeeetee e e 565
19.12. LoCk ManQ@emMENLcueruieriiriieiiniieienieeitete sttt ettt ettt ettt e e saee e v 565
19.13. Version and Platform Compatibilitycccceceeviereiieneniininieiieeeenceeeeee 566
19.13.1. Previous PostgreSQL Versionsc..ceceeeeeenereenenenieneneeneneeneennens 566
19.13.2. Platform and Client Compatibility..........ccccecererieneneniieniniencnceenene 568
19.14. Error Handlingcooeierieniiniiniineiicnceteesitetesie ettt s 569
19.15. PreSet OPLiONS. ...cc.eeevieriienierieeiieesitenitesteerteesteesttesteebeesssesssessseesseesseesssessseenseens 569
19.16. Customized OPLONSccvvieiieriieriieeieeitenieeteesteesteebeeteesteesbeesseesseeseseesseenseens 571
19.17. DeVelOPer OPLONSceveiriieieeieesiieeteeitesiteeteesteesttesbeeteesseesabeesseesseessseeseenseens 571
19.18. SROTE OPLIONS...ceuiieiiiiiieiieeieeiee st eie et st e ettt e sitesbe e bt esbeesabeebeenseesaseenseeseens 574
20. Client AUhENTICAIONco.eevuirieieiieieniet ettt ettt ettt st e e saeesaenaees 575
20.1. The pg_hba . conf FIlE ..o 575
20.2. USEr Name MaPScccveerieriiiiieiiesieenitesite sttt esite sttt et e st e sbeeseesbeesateeseenseens 581
20.3. Authentication Methodsc.cccoerieiieniiriiniiiienienceieeeeetesc e 583
20.3.1. Trust AuthentiCationc..cecevereerienierienieeeneeeereneerenre e 583
20.3.2. Password AuthentiCationcccceeveeeeerrieenieriieniieenieeseeeieesbeesreeeeenne 583
20.3.3. GSSAPI AUthentiCationcueeeeuererciieeriieerreeereeeeeeeieeesreeesreeeneens 584
20.3.4. SSPI AUthentiCation.........ccccueeeciieeeiieeriieerieeeereeesve e e e eeeeeesreeeseseeenneas 585
20.3.5. Ident AUthentiCatioN.........ceeveeeeuieeeiireriieerieeesreeereeereeeereesreeesnseeenneas 586
20.3.6. Peer AUthentiCatiON.ececieeeiieeeiieeeieeesreeeeteeete e e e eeaeeesreeesnseeeneeas 587
20.3.7. LDAP AUtheNtiCatioNccceeeiuieeeriireriieeriieesreeeieeesireesseeesseessnseesnnnens 587
20.3.8. RADIUS AUthentiCatiON.......ceecvreriieriieeieesiiesieeieeteesieeeseesseesseesseeseenne 589
20.3.9. Certificate AUthentiCatioNcc.eeevierveeiueeiriesieeieesieeseeeeeesreesseesseeseenns 590
20.3.10. PAM AUthentiCationcccueevueeiiiesieeieeiriesieeereesreesieesseesseesseesssessseenne 590
20.3.11. BSD AUthentiCationcccueevueeriierieeieeiriesreeseesieeseesseesseesseessessseenns 591

20.4. Authentication Problemscccueeiiiiieiieiiieiieerie et esie et eve e eseee e eaeeeee s 591
21. Database ROIES.......coooiiiiiiiieiieeeee ettt ettt ettt e et e et e e aee et e eane 593
21.1. Database ROIESc.ccceeriieiieiiieiieeieerieesee ettt et e seteeveesaeeseaesbeeseesseessseenseenseens 593
21.2. ROIE ALIITDULES ...c.eeeieiiiiieiiesieeitete ettt sttt ettt sbe et naeeae 594
21.3. ROIE MeMDBEISHIPeouviiiiiiiiiniieieiiee ettt 595
21.4. Dropping ROIES.....c..ccouiiiiiiiiientiteteeee sttt 596
21.5. Default ROIESoueiiiiiiiieienieeiteteseeet ettt sttt 597
21.6. FUNCHON SECUIILY ...c..ceviriieiiniiriieieiieetenteeitete ettt sttt sttt saee e sbe e naeeae 598
22. Managing Databasescoeeveererierieniiriiieieee ettt sttt 599

xiii

22,1, OVEIVIEW ..coenetveieeeeetieeee e eeetee e eeette e e eeetae e e e eetaeeeeeeetteeeeeeetaeeeeeeeabaeeeeenntreeeeennarreeeas 599

22.2. Creating @ Databasecocueeviieriiniiiiieieeie ettt sttt st 599
22.3. Template Databasescocueeruierieriiiriieniienie ettt ettt esbeesteebeeaee s 600
22.4. Database CONfIGUIALIONeevviiriieriiiiieriienie ettt ettt sttt e st ebeeaee s 601
22.5. Destroying a Databasecoceeveeriiiiiienienieeieeitesite ettt st 602
22.6. TabIESPACESccuvenreurenriiieienttetete ettt ettt ae et et st ne s neeae 602
23, LOCAIZALION...c...eiiiiiiieitecite ettt ettt sttt e b e ettt b e st et e e b e e st e eateeane 605
23.1. LOCAlE SUPPOTT......couiiiiiiiiiniieieeieeeetete ettt sttt e ne s eae 605
2311, OVEIVIEW .ttt et st sttt st e be e satesane e 605
23.1.2. BERAVIOT .ttt ettt ettt 606
23.1.3. PIODICINS .ottt ettt ettt et 607

23.2. COllAtioN SUPPOIL.....eetieeieiertieiierteetieiesteeteste et esteseeetesteese e tesseeeesaeeneesesseensenseens 607
23.2. 1. CONCOPLS....eneeeueeeeeieeteetieieete e ste et e e st e e s te et e saesaeetesbeeneesseeneenaesneeneeanean 607
23.2.2. Managing Collationscoeeueeuereirininenienieeetee ettt srensesaens 609

23.3. Character SEt SUPPOIT......cc.evuiruiirieriieientieiieieetcete st e te bt ettt sttt e seesseestesbeeneenaeene 610
23.3.1. Supported Character SELS.........coceeiererierierieierieetetesieeee e eeee e seeeeesaeas 610
23.3.2. Setting the Character Set..........coceviererierienieierie ettt 613
23.3.3. Automatic Character Set Conversion Between Server and Client........... 614
23.3.4. Further REadingcccceoeviiiiiniiieiinieieeetee et 616

24. Routine Database Maintenance Tasks.........cccocevevieiieiiinininienicieinneseeeeeeeeee e 617
24.1. ROUINE VACUUINGvevieiieiiniieienieeitenteeitete ettt st sttt st et e e st et sbeeasenaeene 617
24.1.1. Vacuuming BasiCscouevuirirriiririinieniieieneetere sttt 617
24.1.2. Recovering DisK SPaCecocuevirienienieiiininieniciteiesieeteeeee e 618
24.1.3. Updating Planner StatiStiCScocuevuereeriererienienieienieneeneseesiesieereniene 619
24.1.4. Updating The Visibility Mapccceevvevieriiiriiienienieeieeneesee e 620
24.1.5. Preventing Transaction ID Wraparound Failures.........cc.ccocceceeneneeciencnne 620
24.1.5.1. Multixacts and Wraparound.........cccceeevveereeneeriieenieeneesveeneenneens 623

24.1.6. The Autovacuum Daemonccccceeviviiiniiiiiiiiininiiiceicceceeee 623

24.2. RoUting REINAEXINGccueeviiiiiiriiiiiieiienitesie ettt sttt sttt e st ebeeiee s 625
24.3. Log File MainNtenancCe..........cccceereeriieriienienieeieenitesitesieesieesieesseeseesseesseeseenseens 625
25. Backup and RESTOTEcevueiiiiiiiiiieiieeieeite sttt ettt sttt e ste st e beesabesaneenne 627
25.1. SQL DUIMP. c.utiiiiiiiieeiteste ettt sttt ettt ettt sbt e sttt e sbeesabeebeebeesateenbeebeens 627
25.1.1. Restoring the DUMPcocierieriiiiiiieniieeieiieesteeeeeeete e 627
25.1.2. Using pg_dumpall..........cccooiriiiniiieninieienieeeeeeeieseerenre e e 628
25.1.3. Handling Large Databasescccccceeiecienieieninieieneeieneeeeie e 629

25.2. File System Level BaCkup.........coccoieiiiniiiiiiiiiiiinicieeceeeeeeese e 630
25.3. Continuous Archiving and Point-in-Time Recovery (PITR)...........c.ccccccoceeennn. 631
25.3.1. Setting Up WAL ATchiving......c.ccocooiiiiiiiniiiiiiicienicceceee e 632
25.3.2. Making a Base Backupccccoeiiiiiiiiiiniiiiicccccc e 634
25.3.3. Making a Base Backup Using the Low Level APIcccccoeceivniennen. 635
25.3.3.1. Making a non-exclusive low level backupcccccoeeevinennnnen. 635

25.3.3.2. Making an exclusive low level backup.........cccceeverinienincenennen. 636

25.3.3.3. Backing up the data dir€Ctory........ccceceerereeneenieieneeiene e 637

25.3.4. Recovering Using a Continuous Archive Backupcccccoceeeeninennncn. 638
25.3.5. TIMELINES ...cveeuieiieiieieeteee ettt sttt s saeas 639
25.3.6. Tips and EXamplesccceverieniiiininieieneeee et 640
25.3.6.1. Standalone Hot Backupsc..cccevirieniniincniniinieniecceeee 640

25.3.6.2. Compressed Archive Logscccevevieniiiineninicnieniencceeene 641

25.3.6.3. archive_command SCIPLS ..ccceevveriirierierienienieeienieeeenee e 641

25.3.7. CAVEALS ...ttt et 642

26. High Availability, Load Balancing, and Replication............cccceeereenenenicnencencncenennen. 643
26.1. Comparison of Different SOIUtIONS........cccueevirriierierieeieereente e 643

Xiv

26.2. Log-Shipping Standby SETVETS.........cccceeviiriiriiienienie ittt ettt eieesiee 646

26.2.1. PIANNING «..eoiieiiiiiieieeteeitete ettt ettt st sttt st e be e s s 647
26.2.2. Standby Server OPerationcocceereerierrieenieniieniieenieesreeseeesieessesaeenne 647
26.2.3. Preparing the Master for Standby SErverscoccecceevieriierieeneeniienceeenne 648
26.2.4. Setting Up a Standby Server..........ccovieeieriiienienieeieeniteeeeeeesiee e 648
26.2.5. Streaming Replication...........ccccoereerienieiiinieiienienieieneereneeeeee e 649
26.2.5.1. AUthentiCatiON ...cccuververiieeniieeieeieenite ettt st 650

26.2.5.2. MONILOTING.....c..eeuieiieiierenieeresieeeeteeieeae st st ene e ne s 650

26.2.6. Replication SIOTScoeecuiriieiiininieienieeee e 651
26.2.6.1. Querying and manipulating replication slotsccccccoceeenenen. 651

26.2.6.2. Configuration EXampleccceceviriieniiieienieesceeee e 651

26.2.7. Cascading RepliCationccoveeieiienieiiinieiere e 652
26.2.8. Synchronous Replicationcccceoeeierienieiieneeieiesceese e 652
26.2.8.1. Basic Configuration...........cccevueeienieienienceie e 653

26.2.8.2. Multiple Synchronous Standbys.........ccccceeevereeiieneniienenceeene 653

26.2.8.3. Planning for Performance.............ccceceviriinininiininecnceeee 654

26.2.8.4. Planning for High Availabilityccocoovenininiininiiiceeee 654

26.2.9. Continuous archiving in standbycccceeceevienerienenieieneeene e 655

26.3. FaAIIOVET ...ttt sttt s e 655
26.4. Alternative Method for Log Shippingcccceceevererieninieniinenieneeieesceieee 656
26.4.1. IMPIeMENTATION ...c.vveuiiiieiieieeieieeiteestt ettt sttt et saeas 657
26.4.2. Record-based Log Shipping........cccceeeveevienenienenienienieicnieeeenie e 658

26.5. HOt Standbycccocevuiiiriiiiiiiiiiiiiccetee e 658
26.5.1. USEI'S OVEIVIEW....c.couviuieiiiiiiiiiniciciieeee ettt s 658
26.5.2. Handling Query COnfliCtsccueecuirriierieriieiiienienie et 660
26.5.3. Administrator’s OVEIVIEWc..ccueiiiririiniiienieieieiee e 662
26.5.4. Hot Standby Parameter Reference..........cocceevveviencieniiieniincieniieeeeee, 664
20.5.5. CAVEALS ...ttt e 665

27. RecoOVEry CONTIGUIALIONeouvieiieiierieeieeniieste et eieeste et e et e st e sbeebeesbeesabesbeesbeesasesnseenne 666
27.1. Archive ReCOVETY SELHNGS ..eecveeruieriiiiiieniieniieeieeite sttt ettt sttt st ebe e 666
27.2. ReCOVETY Target SEIUNZSeevveeruieriieiiieniieniteeieeite sttt et e sttt esieesbeebeeaee s 667
27.3. Standby Server SEHNZSeeveirierieriienienieeieente st et e st ettt e e esbeesteebeenaee s 668
28. Monitoring Database ACHVILYccc.eerueerierriierieeieetee et et et eete et esbtesateeseesbeesaaesseenne 670
28.1. Standard UnixX TOOISccceririenirieieieieit et 670
28.2. The StatiStics COIECOTiivuiiriiiriiieieerterie ettt ettt 671
28.2.1. Statistics Collection CONfIGUIrationcoeecveruerienieneerenieeeie e 671
28.2.2. VIEWING STALISTICScuveuieuiiiieieieeeetesieeeete ettt e s 672
28.2.3. StatisticS FUNCHONScoueiiiiiiiiiiiiiieniteeieeeesiteeteee et 692

28.3. VIEWINZ LOCKS ...t 694
28.4. Progress REPOTTINGcoeoveiiiriiriiniiicieieteitecsre ettt ettt s s 694
28.4.1. VACUUM Progress Reporting........c.cccceeverueveieinierenenieneeeeeeeneneneens 695

28.5. DyNamiC TIACINEcevevvirieieiieiiiiiriietitetetet ettt sttt sttt eae b saesaennen 697
28.5.1. Compiling for Dynamic Tracing..........ccccevevverveveeinirenenienieieenenenennens 697
28.5.2. BUIlt-in PrODES ...cveeniiiieiieiieieee et 697
28.5.3. USING PrODESc.veviiniiiieieieeteee ettt 706
28.5.4. Defining New Probesccocceviriiriinieiiinieieneeteesieeeseeee e 707

29. Monitoring Disk USAZEcc.eriiriiriiiiiniieieiietere ettt sttt 709
29.1. Determining Disk USAZecoceevirieiiniiiiiniiiieiesieeteeiteeeeete et 709
29.2. Disk Full Failure........ccccouevieiiiiiiiiiiciciciceseeeeee et 710
30. Reliability and the Write-Ahead LOg........ccceeieviiriiiiniiiiniiiiceneeecetee e 711
30.1. REHADIIILY ..evovviieiiiiiiiieiccee et 711
30.2. Write-Ahead Log@ing (WAL) ...c..cocoeviiiiiiiniieeneeteeseeeseeeeseseeeseeeeae 713

XV

30.3. ASynchronous COMIMIL.........cceerieriierienienieeieente st ebeesiee et eaeesieesteeseenaeens 713
30.4. WAL CONfIGUIALION «...eeuviiiiieiiiiiesiieeieesite sttt eitesitesbeesieesieesbeeseesbeesabeeseeseens 715
30.5. WAL INternalscccoouiiiiiiiiiiiiiiiiicicicccieseeecee e 718
31, REGIESSION TESLS ..eeuuiiiuieiiieiieeteeieet ettt et e st e bttt e st st e st esbtesate st e esbeesaeesateebeasaeesanas 719
31.1. RUNNING the TESES ...eevieiieriiiiiieiieiie ettt sttt sttt e b 719
31.1.1. Running the Tests Against a Temporary Installation.............ccccceceecvencee 719
31.1.2. Running the Tests Against an Existing Installationcccccccceveeeiencnne 719
31.1.3. Additional TeSt SUILES ...c.eeevveerieriiiiienieeie ettt ettt 720
31.1.4. Locale and Encoding............cccccceevieciinieiieniiieienieieeieeeceeeee e 720
3115 EXITA TESES ..eeeieeriiieieeeiteete ettt ettt sttt 721
31.1.6. Testing Hot Standby.........c.coceiiiiiiiiiiiiiiiiccceece e 721

31.2. Test EVAIUATION ...ouveiiiiiiiiiieieeieeetee ettt st 722
31.2.1. Error Message Differences..........oceveeierereeienenieieeieeese e 722
31.2.2. Locale Differencesccoeeieruieieniiniieiesieeteie sttt 722
31.2.3. Date and Time Differencesceoceveereneiienenieieneeeeeeee e 723
31.2.4. Floating-Point Differences.........cccceocevierenirienenieieneeeese e 723
31.2.5. Row Ordering Differencescoceeerierienerienenieieneeeneeceesieeesee 723
31.2.6. Insufficient Stack Depth..........cccoeoieiiiiiiiniiiiiniceeeeeeee 724
31.2.7. The “random” TeSt........cceirirerierieiiininiesreteeceeeeese e 724
31.2.8. Configuration Parameters...........cocuevueveerierenienienienieneeieneeeeesieeeniene 724

31.3. Variant CompariSOn Filescoceiiiiiiniiiiiniiieienenteeeteeeetese et 724
314 TAP TESES .ottt sttt s e 725
31.5. Test Coverage EXamination...........cccceeveieieininenienieieieenesteeseeeeeeeeie e 726
IV. Client Interfaces 727
32, THDPQ = C LADTATY .eouvvieiiieiieiiieeieeieeite ettt ettt ettt et sat e et e st e st e sabeesaaesaaesnseenbeenanesnnas 729
32.1. Database Connection Control FUNCtionscccccoeevvenieriecienenniencnieneneeienene 729
32.1.1. CONNECLION SIS ..veervreruiietieriienieeieenteste et esttesteeteesteesaresabeenbeesaeesaeas 735
32.1.1.1. Keyword/Value Connection Stringsc...cceceervveerveeneerueenveenneens 735

32.1.1.2. Connection URIS.......ccccerieiininiininiinicieeicnecrceeec e 735

32.1.2. Parameter Key WOrdScccovieriiiiiiinieniiiiieeteeeeteste e 736

32.2. Connection Status FUNCHONScoceecieriiriiniiiieiinicieeeeceeceeesee e 740
32.3. Command Execution FUNCHONScccceceeviiiieiiniiiiiiniciececececeseerenene 745
32.3.1. Main FUNCHONS «...ooiviiiiiiiiiiieiieee ettt 745
32.3.2. Retrieving Query Result Informationcccceceecininiininiininnienene 752
32.3.3. Retrieving Other Result Informationccccoceecininiininiininiienene 756
32.3.4. Escaping Strings for Inclusion in SQL Commands...........ccccceveeceninne 757

32.4. Asynchronous Command Processing............cccceccrievieniniiciniiicneiicnienceieeene 759
32.5. Retrieving Query Results ROW-BY-ROWcccooiiiiiiiiiiiiiieeeeeeeee 763
32.6. Canceling QUeries in Progress.ccccovieieriiienenieiesieeiee et 764
32.7. The Fast-Path INterface.........cccceiiiieiiiniiiiei e 765
32.8. Asynchronous NOHTICAIONceiueiierieriieieieeieie ettt 766
32.9. Functions Associated with the COPY Commandceceeeuereenieninienenieienenne 767
32.9.1. Functions for Sending COPY Data........ccccoveiieriinieiininieneeeesceeene 768
32.9.2. Functions for Receiving COPY Data........ccocevievienieiieniinieniiieeniceenee 769
32.9.3. Obsolete Functions for COPYccccvriririinienienieieieineneieeeeee e 769
32.10. Control FUNCHONSccucoueiiiiiiriiitiieieictetteese ettt s 771
32.11. Miscellaneous FUNCHONSc.cocevuirierieieiniiniienicieieeeeeeeteeeeeee e 773
32.12. NOUICE PrOCESSINGveveeutiiiriieiiniieieniceiteie ettt ettt ettt sae s 775
32,13 EVENE SYSBIM c.euviiieiiiiieiienieeiteiesitet ettt ettt ettt ettt sae b sne b eae 776
32.13.1. EVENE TYPES..eteeiieiieeiieeieettesite ettt sttt st e sanesabeeaeesaeesenas 776
32.13.2. Event Callback Procedure........c..ccceveeviinerieninienienenicnceeeneseereniene 778

xvi

32.13.3. Event Support FUNCHONScccuerviiiiieniienieeiteiteete et 779

32.13.4. Event EXampIecooieeiiiiiiinieiieeiteteee ettt 780
32.14. Environment Variablesccoccovierieririiniiiienineeienieneereeeeeesre et 782
32.15. The Password Fileccccccoiiiiiiiiiiiiiiiiiccecc e 784
32.16. The Connection Service Fileccccoiiiiiniiiieiiniiiiiinicieececceeeeseerene 784
32.17. LDAP Lookup of Connection Parameters..........c..ccceeervecrenincieneniencneenenene 785
32.18. SSL SUPPOTT....viiiriiiiiiieientteieieeteteste et ettt sae e st ne s anenneeae 786

32.18.1. Client Verification of Server Certificatesccocuervueeneeneensieeneeneennne. 786

32.18.2. Client CertifiCaes.......cervirriirrieriiiieenitenie et stte sttt st 787

32.18.3. Protection Provided in Different Modesccecevvieinienieniiennenneennee. 787

32.18.4. SSL Client File USage.........cccevuerueerereriinienieieeeenienenieneeeeeee e seenene 789

32.18.5. SSL Library InitialiZationc.cccceceeeruinenienieneeenineneneeeeeeceeeseenenne 789
32.19. Behavior in Threaded Programs........c..cccecceveverenenieieinenineneneeeeeenese e 790
32.20. Building libpgq Programs...........c..ceeeuevierieinininenenieieieencseseseeeeeeesie e 791
32.21. Example Programs.ccocoioiiiiiiiiiiiiii e 792

33 LarEE ODJECLS ..euveeieneietieieste ettt ettt ettt et b e et e e s bt s at et e e b e es et e eate bt saeentesbeententeene 802
331, INEOAUCTION ...ttt sttt ettt et et be b see e eae 802
33.2. Implementation FEaturescoccoieieriiiiniiienie e 802
33.3. Client INEITACES.covevueieieiiiiieiiiiteeeeee ettt 802

33.3.1. Creating a Large ODJECtcocueiuerieriirieienieiieieniteesieetese e 803

33.3.2. Importing a Large ODbJECt........ccevieviirieriiniiieienieieeetere et 803

33.3.3. Exporting a Large ODbJeCt........coevieviirieriineiieieniieiesieetenee e 804

33.3.4. Opening an Existing Large ODJect........ccccoevieriinienieneniineneeieneereniene 804

33.3.5. Writing Data to a Large ObjJect.........coccevuereriinieniriieneniincneeneneeveniene 804

33.3.6. Reading Data from a Large ObjJectccccevvvierienieniiienienienieeieeneeene 805

33.3.7. Seeking in a Large ObJECt......ccceecuerriierieriieriierienee ettt 805

33.3.8. Obtaining the Seek Position of a Large Object........cccevvevvercirenieeneennen. 805

33.3.9. Truncating a Large ODJECTccceevuerriierieniieriierienie ettt 806

33.3.10. Closing a Large Object DeSCIiptorccceevveerieriersiienienienieenieeneenenes 806

33.3.11. Removing a Large ODbJECtcccuirviiinieniiiiiieieieeeeriteseeee e 806
33.4. Server-side FUNCHONSccocoiiiiiiiiiiiiiiiiciccce e 807
33.5. EXample Programccocveviiriiniiiniienienie ettt sttt st 808

34. ECPG - Embedded SQL in C.....ccccooiiiiiiiiiiiiiiiiiccccceceec s 814
34.1. The CONCEPL......oeiiriietiiieiertieeete ettt et sttt sae et sae st ne i eanenneeae 814
34.2. Managing Database CONNECHIONScc.eeeeruiruieniereeieniinieerenteeeesreeeesresieeenenneene 814

34.2.1. Connecting to the Database Server..........c..ccccccevieiininiininicncnieenene 814

34.2.2. ChooSing @ CONNECHIONcc..ccuiruieiiriieienieeierenteeeesre et ene s eaneneae 816

34.2.3. Closing @ CONNECHION........c.eeveiiruieiieiieienie ettt 817
34.3. Running SQL Commands..........c..cocoeeueriiiiriiiiiiiniiieeeeeeee e 817

34.3.1. Executing SQL Statementsccceceeieriereerierenieieneeeeseeeeeseesreeeeseeene 817

34.3.2. USING CULSOTS...euvtetiereeeeuieeieentteeiteeteesetestesteesseesieesateesseesseesaseenneesseenaees 818

34.3.3. Managing Transactionsc..ceeeueeeerueruenrenienueneeeeesenenseeenreessesnenenne 819

34.3.4. Prepared StateImeNLS.c.coveueruerierreeeineriesreteteneeneereseseeseenneanenesaesrenenne 819
34.4. Using HOSt Variablesccceeieiiiieiiniieieie ettt 820

3441, OVEIVIEW ..ttt ettt sttt ettt ettt st e b b et e sttt e naesateaesbeeneenbeene 820

34.4.2. DEClare SECHIONS.ccuerueeruerierienteetietesieete st eitetesbeete st eieesae st eseesbeesneneeene 821

34.4.3. Retrieving Query Results........cccceveviiiieniiniiieniinieieieeeeceeeesieeeee 821

34.4.4. TYPE MAPPING ..nteviiniiriieienieeieteet ettt ettt ettt neeeae 822

34.4.4.1. Handling Character Stringscocceceerereeneneneeneneeneneeneennens 823
34.4.4.2. Accessing Special Data TYPes......cocceceevereeneneniieneneenineeienens 823
34.4.4.2.1. timestamp, datecoceevuereeienienieniineeieneeeeneneeeeniene 824
34.4.42.2.I0teTVAl ..o 824

XVii

34.4.4.2.3. numeric, decimal........ccccvvvviiiiiiiiiiiiiiiiiieeeeeeeeeen 825

34.4.4.3. Host Variables with Nonprimitive Typesc.cccoeceereerieeneenneen. 826

34443, 1. AITAYS wooveiiiiieiieeie ettt sttt st 826

34.4.4.3.2. SIIUCLULESoviiiiiiiiiciciceeecc e 827

34.4.4.3.3. TYPAefS...cooueeeiiiiiiieetee et 828

34.4.4.3.4. POINLETS ...ceeeureiieiieiieieeie et 829

34.4.5. Handling Nonprimitive SQL Data Types........cccceceecverirceninieeneneerennene 829
34451 ATTAYS .ottt s 829

34.4.5.2. ComPOSIte TYPESeeeueemririieieiieieiieeee et 831

34.4.5.3. User-defined Base TYPesc..ccceeieieninieieninicicecceceneeee 833

34.4.6. INAICALOTS. c...eeueeeiiieiieeiteete ettt ettt et sttt sttt e e et e e 834

34.5. DyNamic SQL....c.ooiiiieiieieeieeee ettt sttt eae 834
34.5.1. Executing Statements without a Result Setcccooceevininieninieienene 834
34.5.2. Executing a Statement with Input Parameterscccccevveienenceienene 835
34.5.3. Executing a Statement with a Result Setcccceoiiiniiiiiiiniiieee 835

34.0. PELYPES LADTATY ...eeeieiiiiieetie ettt 836
34.6.1. Character SrNEScoceeruereeierieetieieeieete ettt sttt see b enee e ene 837
34.6.2. The NUMETIC TYPE ..cuviruieiiriiriieieeiteteetee ettt 837
34.6.3. The date TYPE.....eeeeruireeierieeiesieettete ettt st 839
34.6.4. The timestamp TYPE.....ccoeruerieriirieriinieieneeterest ettt 843
34.6.5. The interval TYPE ...cc.eeeerieririeiiniieieeiceteseeteestt ettt 846
34.6.6. The decimal TYPE......coceeruererieriinieiineeteneeteesttee et 847
34.6.7. errno Values of pgtypeslibcc.cocveviiriiiiininiininiiieneeceeeeseeeee 847
34.6.8. Special Constants of pgtypeslib........ccccevererieninieiiinieniinineeenecreene 848

34.7. USING DESCIIPLOT ATCAS ...eouvieiieiieiiiieiieniteeiteeieesitesieesteesaeesseesseesseesseessseesesnseens 849
34.7.1. Named SQL DeSCriptor ATEAScecveerureriuerrieenieenieeieenieesresreenseeseesanes 849
34.7.2. SQLDA DeSCTIPLOT ATEASveevuverurieiienirerierieenieentesieeseeseesseenseesseesenes 851
34.7.2.1. SQLDA Data StruCtUre.........ccccveeevureeicrieeeiieeeieeeereeesereeesereeeeneas 852

34.7.2.1.1. sqlda_t StrUCtUTeccoeevieriieieiie et 852

34.7.2.1.2. SQIVar_t StrUCTUTEeevvierieiieeieeite ettt 853

34.7.2.1.3. struct sqlname StruCtUrecocceeveerveenieeneerieenieeneenanes 853

34.7.2.2. Retrieving a Result Set Using an SQLDAccccovvivviieenennneen. 854

34.7.2.3. Passing Query Parameters Using an SQLDA..........ccccocuverernen. 855

34.7.2.4. A Sample Application Using SQLDAccccccovvrveinieniienneneene 856

34.8. Error HandIINGocueviiiiiiniiiieiiiieieecie ettt 862
34.8.1. Setting Callbacksccceririiiiiiriiiiiieiereceeeeeee e 862
34.8.2. SQLCA .. 864
34.8.3. SQLSTATE VS. SQLCODE ...ttt s 865

34.9. Preprocessor DITECHIVESc..ooiiiiiiiiiiiiiiiiieece st 869
34.9.1. InCclUdIng FIlescc.coueieiriiiiniinicicietect et 869
34.9.2. The define and undef DireCtivesccceverieieniereneeiere e 869
34.9.3. ifdef, ifndef, else, elif, and endif Directives........ccoovveviviceeieeiviiieeeeinnes 870
34.10. Processing Embedded SQL Programs............ccccooeeieiinieieneeieneeieiesceeene 871
34.11. Library FUNCHONScouteiiiiiiieieiiieiesteeiee ettt st 872
3412, LarZ ODJECES. ..cuueuieuiitieiesieeiierte ettt ettt ettt st ete st e bt ettt et esbe st ebesbeeneenaeeae 872
34.13. CA4 APPIICALIONS ...uvineieiiiiieiieieeieeiest ettt ettt et sbe st sbe e e eae 874
34.13.1. Scope for Host Variables..........ccceverierienirienienieienieeteneeeeesieeeniene 874
34.13.2. C++ Application Development with External C Module 876
34.14. Embedded SQL CommandSc...coeuiieeiuieeiiiieeeieeeeieeeieeeeeieeeeeeeeeveeeeaveeeeaneas 878
ALLOCATE DESCRIPTORc.cociriiiiiiiiiniiciienieieeetetse et 878
CONNECT ...ttt ettt sttt 880
DEALLOCATE DESCRIPTORcocoitiiiiinieiiniteienieeeeiesieereieeitenee e 883

XViii

DESCRIBEootiiiiet ettt ettt ettt e eve e teeeaeereebeeeabeenneenns 886
DISCONNECT ...ttt ettt ettt et sta e e aeeve e sbeesbeeveesbeesaseeaneenns 887
EXECUTE IMMEDIATEc.oiitiiiieeeeeeeteee ettt ettt ve et veeane e 889

GET DESCRIPTORcttiiiiiiietiecteee ettt ettt eve et eeaveeveeveesneeaneenns 890
OPEN ...ttt ettt e e et e s ta e e b e et e e sbaeesseeabe e beaesbeeaseebaeesaeenbaenns 893
PREPARE ...t e e e e e eenneas 895

SET AUTOCOMMIT ... 896

SET CONNECTION ...t 897

SET DESCRIPTORoooeiiieeeeeeeeeee e 898
TYPE. ...t eneas 900

VAR ..ottt 902
WHENEVERo ettt 903
34.15. Informix Compatibility MOdEccccovereeiriniinenenieieieenesreeeceeeeeee e 905
34.15.1. Additional TYPES ...cceeveueeuiriirinieieiienertesteteeeteee e 905
34.15.2. Additional/Missing Embedded SQL Statementsccccceeeveerennenenn. 905
34.15.3. Informix-compatible SQLDA Descriptor Areas........cc.cceeeeereneeceennenne 906
34.15.4. Additional FUNCHONS.cociiiiiiiieeiii et e 909
34.15.5. Additional CONSLANES........cceerveerreeriierreeireereeseeeteeieesresreeseesseesseesnnes 917
34,16, INLETNALS ...eeuvieeie ettt ettt ettt e et eebe et esabessbeeseessaesnbeenseensnesnseenseenseens 918
35. The Information SCHEMA.........c.eecuiiiiieiieieeriieeie ettt seesre e beesaeesaaesnbeeseesaeesnnas 921
35.1. The SCHEMA ...cc.eeiiiiieiieie ettt ettt et e s st e eaeesseessbeenseeneeens 921
35.2. DAta TYPES -cveenrenieriieieeieetesteetete ettt ettt sttt sttt st s eae 921
35.3. information_schema_catalog NAME .uueieeiireeieeiiiireeeeeiireeeeeenareeeeennseeeees 922
35.4. administrable role aUthOTriZationS . eeeeeeeeeeeeeeeeeeeeereeeeeeeaeeeees 922
R R Y o) R o) o1 =S o o Y K=Y TR USRI 922
R = ol o < N =Y =TS RO PRI 923
3.7 G AT A O T SO S oo e e et et e e e e e e e e e e e e ettt e e aeeaeeaeeeeeeeta e ———————————. 927
35.8. check_constraint_roULIiNe_USATE .vvieieeiiiireeeeeeeireeeeeeereeeeeeetreeeeeeereeeees 928
35,0, CRE K CONSETAIIIES teeeeteeeeeeeiit e e e e e e e e e e e ettt e eaeeeeeeeeeeeeereeeaaeneaaanaaaeees 928

35.10. collations

35.11. collation_character_set_applicability

35.12. column_domain_usage

35.13. column_options

35.14. column_privileges

35.15. column_udt_usage

35,16, COLUMNS toiiettiiee ettt ettt eeete e e ettt e e e et a e e e e e etbe e e e e eeataeeeeeeenbaeeeeeensreeeeeensreeeas

35.17. constraint_COLUMN_USAGTE wuiieiieirrreeeeriirrreeeeeireeeeeeerrereeeeesreeeeeessreeeeseesseeens 937
35.18. constraint_table USAgE i iiieeeeiiiieeeeeiteeeeeeerreeeeeeeraeeeeeerreeeeeenreeeeas 938
35.19. data_tyPe PrivVileges i iieeeieeeieeesireeesreeesreessseeeansreesssseessseessseessnses 938
35.20. domain. CONSTTAINTS tiiiiiiiiiiiiciieeeeeeeeeee e e eeee e e e e e e e e e e e e eeeessasaraaneeeees 939
35.21. AOMAIN_ UL _USAGC e iiiitiiieeieeiieieeeeitteeeeeeetteeeeeeitteeeeeeetreeeeeesraeeeeeesrreeeeeansraeens 940
35,22, AOMAITIS tiieittiieeieiitee e e ettt e e eeett e e e e e tae e e e e e tbaeeeeeetbaeeeeaentaeeeeeantareeeeanbaeeeeeanrraaans 940
R TG TR =Y 1Y o L o V4 o Y=Y < TSR RPRRP 943
3. 24, A L A, T 0L S ettt et e et ——— e et t—————ataa————aaaa——————— 946
35.25. foreign_data_WrappPer_OPtiONS. e eeieeeeeeeeeteeeeeteeeeereeeereeeereeeeanens 947
35.26. fOreign_ data_WIaPDETS cietrieeeitieeeireeeeiteeeeitreeeteeeeseeeeteseesseeesessesssesaeseseesnens 947
35,27, foreign_Server _OPTiONS e iitieeeiteeeeteeeeteeeeaeeeeeteeeesteeeetseeereeeeaseseeaneas 947
35,28, O iGN SOV T S iiiiiieeiiiieeitieeeetteeeteeeeteeeeteeeetbeeeeaaeeeteeeetseeesaessssesenasesennneas 948
35.29. foreign_table OPTionS . iiceieeecreeeereeeeteeeteeeeeteeeeaeeeereeeeareseeaneas 948
RIS T I ch o=k e po N =1 N = DRSSPSR 949
35.3], Ky COLUMN _USATC et iitturieeierreeeeeieirreeeeieitereeeeesreeeeeeestreeeeesnraeeeeenareeeeesnrreeees 949

Xix

35,3 P AT AMEE T S ittt iiiiiiee e ettt e ettt e ettt e e e e et e e e e e et eeeearaeeeeenrraae s 950

35.33. referential CONSTIAINTS weeeeeeee ettt eeeeeeeeeeeeeeteeeeareeaeaaaaeees 953
35.34. r0le_COLUMN__ GIANTS tirrieeierirreeeeeeirreeeeieitreeeeeeiireeeeeeeisreeseessreseeeesssreeeeessssseeees 954
35.35. role rOULANE _GrantS aiiieeeieiieeeeeeeireeeeeecreeeeeeetreeeeeeeraeeeeeetreeeeeeearreeeas 954
35.30. £Ole L aDLle_GLants ciirrieeieeiieeeeeeirreeeeeeiteeeeeeeeteeeeeeetreeeeeeeraeeeeestreeeeeenarreeeas 955
35,37, L0l e UAt _GraNT S iiiiiiiiiiieeieeieeeeeeeitreeeeeeeteeeeeeeereeeeeeetaeeeeeeearaeeeeeeareeeeeeenrreeeas 956
35.38. £0le_USAGE_GTANES wiireriiieerrieeitieesieeesiteeesseeesreeessseesssseesssseesssseessseesssseessssees 956
35.30. rOUL INE_PTrivVileges ciiiiiieiiiieeiieeeiieeesireeesreeesreesteeeasreessseessseeenssesssssens 957
35,40, LOUL AN S ceettiiee ittt eeete e e ettt e e e e e e e et e e e e e tae e e e e et ae e e e e ebaeeeeeenraaeaas 958
3541, SCREMAT A ceetiiiei ettt e e et e et e e e e e ebar e e e e ebraeeeeearaaeaas 964
I Yo b LY oYY B URRPR 964
35,43, SOl _fEAEUTES tirrriiieeiieeiiteerteestte e et e e et e e stee e abeesateessaeeensseeensaeesnseeennseeennens 965
3544, sgl_implementation_iNF0 ciiiireiieenieeerieeeieeeeereesaeeesbeeennreeenneas 966
35.45. SGL_LANGUAGES teertrrerreeeiiieeesiieesatteesteeeeteeesseeessteesasseessseesssseesseesssseessnseesanses 967
35.46. SGL_PACKAGES teereerueeeeeerieseesreesreeseesseessseesseesseesssesseesseesssessesssessssessseessessseens 967
R I Yo N T B o= TSR 968
35,48, SOl S1 ZANGuuitiiiiiiiiiieeeeieee et e e e e e e e e et e e e e e e atar e e e enbbaeeeeaaraaaeas 968
35.49. Sl _S1ZiNG_PTOFILlES trritieiiieeiiieeeiieeeiteeette et ee et e e st e e et e e sbte et e et e eaneas 969
35,50, LA e COMSETAITIES teeteeeeeeeeet e et e e e e e e e e e e e e e e e eeeee e eaeaaaaeaaees 969
35, 5. LAl e PriViLEgES ittt iiiiieitiieeite e ettt eetee et e e et e e et et e e et e e eta e e teeeeareeeeareas 970
I I =Y <3 Y SO USRS 971
R T IC T ot o T e B 1= SO O UUPRRURRPR 972
35.54. triggered_UPdate_COLUMNS .iiiieireeiiieeeeeeeitreeeeeeetreeeeeensreeeeeesareeeeennaseeeees 973
RIS I T ook K o 1= of - SNSRI 973
RIS (e JRETG ol o h ok A B =Y 1= DTSRRI 975
R T AR R To 1M o b ok v T =T £ Y- DUU USROS 975
35,58, USEr _definNed L YPES trriiiieeiieieeeeiteeeeeeeee e e eeete e e eetre e e e e et e e e eetre e e e e enareee s 976
35.59. User _MapPPing OPLIONS iiiieiiiieeietreee e e et eeeeeeree e eetre e e e e eearaeeeeeeareeeeeearreee s 978
35.60. USE T _MAPPITIGS tetrrtreiieitirieeeeeteeeeeeeereeeeeeeeteeeeeeeereeeeeeetreeeeeeeraeeeeenareeeeeenrreeees 978
35.601. VieW_COLUMN_USAGE tiitrrieeieeirreeeeeeitrreeeeeeitreeeeeeireeeeeeeisreseeessseseeeesssrseeeesssseeees 979
35.602. VieW _TOULINE_USAGE tirieiieiiiieeeeeiieeeeeeeiteeeeeeeeteeeeeeetreeeeeeeraeeeeeetreeeeeeearreeees 980
35,03, VieW LA USATC et iiiiiieeieeieeeeeeeiteeeeeeeteeeeeeeeteeeeeeetreeeeeeearaeeeeeetreeeeeearraeeas 980
3504, VA@WS tetiieeiiee et eeite et e ettt e ettt e et e e et e e ae e e b e e e b e e e abeeetaeeatbeeaaaeeatbaeenreeenreas 981
V. Server Programming 983
36. Extending SQL ... s 985
36.1. How Extensibility WOTKS........cc.cocoiiiiiiiiiiiiicieicceeceecece e 985
36.2. The PostgreSQL Type SyStem.........cccueiiiiiiiiiiiiiiiiiiieieeeeeeeeeese e 985
36.2.1. BaSE TYPES ..everuirireieieieieetererteeceet ettt e 985
36.2.2. COMPOSILE TYPES ..c.veuveureuieririirienieieeeiteie sttt sa e 985
36.2.3. DOMAINS ..eeuvveeeieeiieiieeieeieesieestteebeeteesesesveeseesseessseesseesssesssessseesssesseessses 986
36.2.4. PSEUAO-TYPES ...vevinvenienrenieiietenertcecteit sttt st 986
36.2.5. PolymoOrphic TYPESccceceruiriiririiieiiinentesteteeeeeeeeese et 986

36.3. User-defined FUNCHONS.........ccveriiiiieiieciecie ettt e e veesseesbeeaeeeee s 987
36.4. Query Language (SQL) FUNCHONSovviriiiniiiieiiniiienieeieeieete et 987
36.4.1. Arguments for SQL FUnctions..........cccceeererierenieiinieneneseeeseeeeniene 988
36.4.2. SQL Functions on Base TYPescccoeveevererienienieiienenieneeeeesieeeniene 989
36.4.3. SQL Functions on Composite TYPESscoceeverierrierieneneenenieneneereniene 991
36.4.4. SQL Functions with Output Parametersc..coceeeveverreeneneenenencenenne 993
36.4.5. SQL Functions with Variable Numbers of Arguments..........cc.cceceecvenene 994
36.4.6. SQL Functions with Default Values for Argumentscocceeeveevenncnne 995
36.4.7. SQL Functions as Table SOUICESc..cccvvieeiviieeiiiieeiie et 996

XX

36.4.8. SQL Functions Returning Setsccocevcuerriienienieniieenienieeieenieenieesenes 997

36.4.9. SQL Functions RetUrning TABLEccocuerruerrieerienienieenieeneeseeenseeseeennnes 999
36.4.10. Polymorphic SQL FUNCHONSoovviiniiiriiiiieiienieeieeitesieeieeieesiee e 999
36.4.11. SQL Functions with Collations............cccccueeeeuireriieenrieeriee e 1001
36.5. Function OVerloadingcoceeveerieiieeiiieniieeieeieesite ettt ettt 1002
36.6. Function Volatility CategOTIiesc.ecueeeeruireerienenrereneerenreeresieeeeresieenesne e 1003
36.7. Procedural Language Functionsccccceeeveneniieniinieienicenceeeeeeeeeneeeee 1004
36.8. Internal FUNCHONS ...cc..eiiuiiiiiiieiieeieee ettt sttt 1004
36.9. C-Language FUNCHONS.ccceiiiiiiiiiiiieceeeeteeeeeeeeese e 1005
36.9.1. Dynamic Loading..........cccooceeiiiiiiiiiiniiiiiiicecee e 1005
36.9.2. Base Types in C-Language Functions............cccceceeievcniniencninccnnnne. 1006
36.9.3. Version 0 Calling CONVENLIONSc.cecureruinrinienieneeeeenenieneereeeeeneenenes 1009
36.9.4. Version 1 Calling CONVENLIONScccecvrueruirrinienreneereeeneneneeeereeeneenenes 1011
36.9.5. WIItINg COde.....covivviieieiieiiiiinerieecieteeeeeteeteeeeee et 1014
36.9.6. Compiling and Linking Dynamically-loaded Functions....................... 1014
36.9.7. Composite-type ATZUMENLScecueruermeerieriieientieieneeeeeneeseeeseesreeeeneeenee 1016
36.9.8. Returning Rows (Composite TYPes)cccceververeeieninienenienieneeieeeene 1018
36.9.9. RetUINING SELS......ccvecveieieiieiirienieicieiee ettt 1019
36.9.10. Polymorphic Arguments and Return Types......c.ccoceeverereeneneeienenne. 1025
36.9.11. Transform FUNCIONSccccerievieiiiiiriiiiieiceeeeeeseeeeeee e 1026
36.9.12. Shared Memory and LWLOCKSc..coceverieiiinieiiiniiiencneeicneeeeee 1026
36.9.13. Using C++ for EXtensibility........ccoceevienirienininiiniiencneeienceeee 1027
36.10. User-defined AZZIEZALESccouerverreriirierienieeienienteieeitetesreete e sieesiesre e neeenee 1028
36.10.1. Moving-Aggregate Mode.........ccceveriererienienieienieiene e 1029
36.10.2. Polymorphic and Variadic Aggregates........ccceveereervveevueeneenveesueeseenns 1031
36.10.3. Ordered-Set AZEreZates......cevueruirrreereeneerieerieeneeseeesieesieesressseesseenns 1032
36.10.4. Partial AZEregationcocveereerrerrieenieeniesieenieesieeseeesseesieessessseenseenns 1033
36.10.5. Support Functions for AZregatescoocuevvveerueeneerieenieeneenreeieenieenns 1034
36.11. User-defined TYPES ..cocveerieriiiiierieeiteteerite ettt ettt sttt 1035
36.11.1. TOAST Considerations.............ccueveiruiruiniinienienieieiieseseeeesee e 1038
36.12. User-defined OPerators.........cceceereeeiueerieenieniensieenieesiesieenieessessessseesseesanesnnes 1039
36.13. Operator Optimization Information.........c..eeceeveenieriieniienienieeeeeeeeeee e 1040
36.13.1. COMMUTATOR t.veuviiiieiieiieiiircite sttt st 1040
36.13.2. NEGATOR .eouiiiiiiiieieieiiereie sttt s 1041
36.13.3. RESTRICT .eeuteuieuieieeieieeieerenieeeenaeeneesaesieessesseesnesaeeneesaesueenesseennenneene 1041
360.13.4. TOTIN ettt ettt sttt sttt ettt be st sa ettt ebe b nes 1042
36.13.5. HASHES .ottt ettt ettt ettt e e 1043
36.13.6. MERGES . ..cutiiitieieiieeenie ettt ettt ettt ae s ne s eae 1044
36.14. Interfacing Extensions To INAeXes.........ccceeeerererieniieieieeeeereeee e 1044
36.14.1. Index Methods and Operator Classescccceevereerienereeneneeeeneenes 1044
36.14.2. Index Method Strategiescceceveeiererienienieieee et 1045
36.14.3. Index Method Support ROUHNESccceveeiiniieiinieieeeeeeeeeee 1047
36.14.4. An EXQAMPIEooiiiiiiiiiiieee e 1050
36.14.5. Operator Classes and Operator Families..........ccccoceeoenenienenennenenne. 1052
36.14.6. System Dependencies on Operator Classescocceeeerereenieneeienuenne. 1055
36.14.7. Ordering OPEratorscccceeeerierieeiererterienieeteseeeeeniesieestesieeneesseenes 1056
36.14.8. Special Features of Operator Classes............coeevuererrienereeneneeneenene 1056
36.15. Packaging Related Objects into an EXtensioncccceeeveeveeneriencneeienenne. 1057
36.15.1. EXtension Files.........ccccoiiiiiiniinieiiiiiiiiiiccecceeseeeeeee e 1058
36.15.2. Extension Relocatabilitycccceveeviererienienienieniiieneneeieneeeeneee 1060
36.15.3. Extension Configuration Tablesc.ccocueverieviinennieneneeneneeienene 1061
36.15.4. EXtension UPaescceevveerieniieiiienieeniiesieeieeneesteesieesieesiresseenseenns 1062

xxi

36.15.5. Security Considerations for EXtensionscceeceevveeveeeneeniensieeneenne 1063

36.15.5.1. Security Considerations for Extension Functions.................... 1063

36.15.5.2. Security Considerations for Extension Scripts.........ccccceeueenee. 1063

36.15.6. Extension EXamplecoceevieriiiiiinieniiiieeieeee et 1064
36.16. Extension Building InfrastruCtureccccoevueeveinieniieniienienieeieceeeeeeeee 1065
BT TIIZEETS ettt ettt ettt et et et sttt et st eae st e b e et sn e ea e nneeaeen 1068
37.1. Overview of Trigger BEhavior..........ccccecevinieiininiieniiiicieccceeeecee 1068
37.2. Visibility of Data Changes.........c..ccceeuieierinieienenieieeeeeeeeeee e 1070
37.3. Writing Trigger Functions in Cc..cccociiiiiininieninceceeceeeeeee e 1071
37.4. A Complete Trigger Example...........cccooceviiiiiininiiiieicccceeeeeeeeee 1073
38 EVENE TIIZEETS ..ottt 1077
38.1. Overview of Event Trigger Behaviorccoccovivieiinienineeceeee e 1077
38.2. Event Trigger Firing MatriXc.coceiieierineeieseeieieeece ettt 1078
38.3. Writing Event Trigger Functions in C...........coccoiirieiinieienieeeeeeeee e 1083
38.4. A Complete Event Trigger EXampleccocceveiirieniinienineeeneeees e 1084
38.5. A Table Rewrite Event Trigger Example..........ccccoooeiiiiininiininiiieeeceee 1085
39. The RUIE SYSLEIMcueeuiiuiiiiiriiiiieietet ettt ettt st s s 1087
39.1. The QUETY TTEE.......eevuieriiriieieeeerte ettt ettt ettt e 1087
39.2. Views and the Rule SyStemcoceiiiiininiiniiniiieeeeeee e 1089
39.2.1. How SELECT Rules Workccccooviiiiiiiiiiiii 1089
39.2.2. View Rules in NOn-SELECT Statementscceeeeueererrerienuenveneennennennen 1093
39.2.3. The Power of Views in PostgreSQLc.cccccevieviininnienenienenieienee 1095
39.2.4. UPdating @ VIBW.....coueiiiriiriiiiiniieienieetenie sttt sttt 1095

39.3. Materialized VIEWScccoveiiiiiiiiiiiiiicicieicee sttt 1096
39.4. Rules on INSERT, UPDATE, aNd DELETEccceevtvuiruenieienieiiniieieieneeeeeneenesnesaens 1098
39.4.1. How Update Rules WOTKccccoeeiiiiiiinieniiiiieieeneesieceeee e 1099
39.4.1.1. A First Rule Step by Step.....cocvevviienierieeiiiiesieeieeeeee e 1100

39.4.2. Cooperation With VIBWS........ccocueriiriiienienieiieeieeniee st esiee e 1103

39.5. Rules and Privil€ZESsccovuervuirriieriiiiieieeniieeieeieeste sttt sttt 1109
39.6. Rules and Command Status...........ccoeevieiiiiiiiiiniiiniiiieeeeeeeee s 1111
39.7. RUIES VETSUS TIIZZETSveiruiieieiiieriieiieeieesiteete et stteste sttt e sitesateebeesaeesanesaees 1111
40. Procedural LangUaZEScccueeruierieriieriiieniieeieeie ettt ettt e st este bt e sate st et e saaesaneeaees 1115
40.1. Installing Procedural Languagescccecueruerreeniierieeiieenienieeieesiee st 1115
41. PL/pgSQL - SQL Procedural Languagec..cccceeueeeeruirienenenieieneeeeneeeenieseeneniens 1118
1.1 OVETIVIEW ittt ettt ettt et sttt e be e st et e e bt e satesabeenbeesateenbeebeenne 1118
41.1.1. Advantages of Using PL/pESQLcccoociiiiiiiiiiinieicceeeeeeeiee 1118
41.1.2. Supported Argument and Result Data Types.........cccccccevieveniniencnnees 1118

41.2. Structure of PL/PZSQL.....ccooiiiiiie e 1119
41.3. DECLarationsc..ceevueeruiiriiieieeieenite ettt ettt ettt st be e st ere e 1121
41.3.1. Declaring Function Parameters.............ccoccererierienieienenieieneeeeeeeene 1121
132 ALTAS ittt et 1124
41.3.3. COPYING TYPES -euverienieieieieieetieieete ettt sttt sttt eee et e s seeens 1124
A1.3.4. ROW TYPES.ccnuiiiiiiiieeiieiiteiteeite ettt sttt ettt ettt e 1124
41.3.5. RECOIA TYPES .ttt ettt 1125
41.3.6. Collation of PL/pgSQL Variablescccceeereroierinienineeienenieneneene 1125

414, EXPIESSIONSeeutitieuietieiteieettete st e teste st et e et estesbeestesaesbt e besbeentenbeeseenbesbeensenbeens 1127
41.5. BaSIC SEALEIMENLS.....c..cueevreuiiuiriiieieieitetietesteste ettt sttt et eae et be s e eseeaesvesaens 1127
41.5.1. ASSIZNIMEGNL ..ottt sttt ettt st sbe s sbeene 1127
41.5.2. Executing a Command With No Result........c..cccceoinienininninnicncnen. 1128
41.5.3. Executing a Query with a Single-row Result..........cccccoeverveninencnen. 1128
41.5.4. Executing Dynamic Commandsc.ccoccevererieneneenencenienenieneneens 1130
41.5.5. Obtaining the Result Status........cccevverierciierienieeieeeeereeee e 1133

XXii

41.5.6. Doing Nothing At Allccceeeiiriiinienieeieeteeteee et 1134

41.6. CONLIOL SIIUCTUTIES......everuretiriieiiinetetente ettt ettt ettt ste s sreeaeesaesaeennesieas 1135
41.6.1. Returning From a FUNCHONccccooviiiiiiiiiiiiiecceceeceeeee 1135
41.6.1.1. RETURN ...eeiiiiiiiitiiiiercccec e 1135

41.6.1.2. RETURN NEXT and RETURN QUERYcccceeviviruenueieiicnninnennes 1135

41.6.2. CoNdItiONALSeoviriieiiiiiieienieetet ettt 1137
41.6.2.1. IF—THEN . .ictteterterueerenieeteteeeere s eresiesanesresaeenesaeesnesaesanesnesnens 1137

41.6.2.2. IF-THEN=ELSE .t.eesterttetetereerenreereneeeeresieenesseeseesseseenesseens 1138

41.6.2.3. IF-THEN=ELSIE sceesttrutrierieeerenreeeenieeeenesieeeesseennesseseenesnens 1138

41.6.2.4. SIMPIE CASE ..cuteuiriiriinienieieteitee ettt eeenes 1139

41.6.2.5. Searched CASE......ceiivieieriieieie ettt snens 1140

41.6.3. STMPLE LLOOPS «..vveeneieiiiiieeiieeteeie ettt ettt 1140
41.6.3.1. LOOP ..ttt sttt sttt ettt et en s 1140

41632 EXIT oottt 1141

41.6.3.3. CONTINUE ..ecteuteuiruinrententeteneentenessesseseneneeneesessessessesenseneenessennen 1141

41.6.3.4. WHILE cverviteieeeneeieeieste sttt sttt ettt s sa st evesaenen 1142

41.6.3.5. FOR (Integer Variant)ccecevereerienerienienienienieeeenieseesiesaeans 1142

41.6.4. Looping Through Query Resultscccceveiirienininniniiinenieeee 1143
41.6.5. Looping Through ATTayscccceveeierireeneninienieeieenie et 1144
41.6.6. Trapping EITOTScc.coouiiiiiiiiiiieieieetec sttt 1145
41.6.6.1. Obtaining Information About an Error..........cccccecceveneniencnen. 1147

41.6.7. Obtaining Execution Location Information............cccceecevcevenenienenene 1149

A1.7. CUISOTS...ueiiiiiiieectetee ettt sttt et e e besaen 1149
41.7.1. Declaring Cursor Variablescoccecerireenenirieninienienceienesrenenieens 1149
41.7.2. OPENING CUISOTS ..veerereeiieiierieeieenitestesteesieestesseesseessesssessseesssessesnses 1150
41.7.2.1. OPEN FOR QUL Y eeeterereeeeeirrreeeeeeirereeeesiiseeeeeessssreeessssssssesessnesees 1150

41.7.2.2. OPEN FOR EXECUTE ..ooueriiiiuiriiriinieieieieeereee e enenes 1151

41.7.2.3. Opening a Bound CUrsor...........cocvevieerieeniienieeiieeneesieeieenieens 1151

41.7.3. USING CUISOTS.c..veeutieiieeieeniieniteeieenitestesiteesteesitesteenbeesisesasesnbeesssesssesnnes 1152
41.7.3. 1 FETCH tviiiiiieieiciiieesecee sttt 1152

41.7.3.2. MOVE oottt s 1152

41.7.3.3. UPDATE/DELETE WHERE CURRENT OF .coceevuerieeenrereennenneens 1153

41.7.3.4. CLOSE ettt s 1153

41.7.3.5. Returning CUISOTScccceeveeeeruimienienienreieneerenneeeesreseenenneens 1153

41.7.4. Looping Through a Cursor’s Result...........ccccocceeeninienininicnenenenene 1155

41.8. Errors and MESSAZES.........ccueeuieiiriieienienieieeiteeeste ettt ne e 1155
41.8.1. Reporting Errors and MeSSagescoceeeevueruieueniineenieneeeeneeeeienneene 1155
41.8.2. Checking ASSEITIONSccceoueruieiiniieieiieieeie et 1157

41.9. Trig@er ProCEAUIESccccuiiiiiiiiiiiieiiiieteeiteeeeee e 1157
41.9.1. Triggers on Data Changes.......c..coceceeerererenienieineninrineneneeeeeeene s 1158
41.9.2. Triggers 0N EVENLScccoivviviiiiiieiiininenccceeeeeeres e 1164
41.10. PL/pgSQL Under the HOOdcoceiiiieiiiieiieeeereeeese e 1165
41.10.1. Variable SUDStItUIONcevuirtieiiiieierte e 1165
41.10.2. Plan Cachingcc.cecueruieierieniieiesieeieste ettt 1167
41.11. Tips for Developing in PL/PESQL........ccccoeiiiiiinininiiicieineneeeeceeene s 1169
41.11.1. Handling of Quotation Marksccccecerervecieiiinininenieneeeeenenennens 1169
41.11.2. Additional Compile-time Checksc.ccooeririeninieniniiieneneeeee 1171
41.12. Porting from Oracle PL/SQL........ccccoceiiiiiiiniiiiniiienenteeneeteseetene e 1171
41.12.1. Porting EXamPIescc.covuerieriiiiiiniiiienieneeieseeeeeeeete et 1172
41.12.2. Other Things to Watch FOr.........cccociiiiiiniiiiiiiccecee 1177
41.12.2.1. Implicit Rollback after EXCeptions...........cecceevereeeenereenennnnns 1177

41.12.2.2. EXECUTE tuteteieieeiieienie sttt sttt 1178

XXiil

41.12.2.3. Optimizing PL/pgSQL Functions.........ccccccecveevieeneeneenseeneenns 1178

A1.12.3. APPENAIX .ecniiiiiiiiiieriieiitenitente ettt e sttt e st e sate e bt e satesateenbeesaaesaresans 1178

42. PL/Tcl - Tcl Procedural Languagec.cevverieeriieniienieeieenitesteeie ettt et 1181
421 OVEIVIBW vttt ettt ettt ettt ettt ettt st be st saeeaeesaesaeenesueeas 1181
42.2. PL/Tcl Functions and ATZUMENTS........c.covtirierreeniierieeieenieesteeieenieesireesseenieenne 1181
42.3. Data Values in PL/TCl.......cccociiiiiiiiiiiiiiiccceeeceeteeeee e 1182
42.4. Global Data in PL/TCLccieieiieieieceeeee ettt 1183
42.5. Database Access from PL/TClooouiiiiiiiiiiiiiiiiciieececceeeeee e 1183
42.6. Trigger Procedures in PL/TCl........coccoiiiiiiiiiiiiceecce e 1185
42.7. Event Trigger Procedures in PL/TCl.........cccocooiiiiiiiiiicccccee 1187
42.8. Error Handling in PL/TCL......ccoooiiiiiiiiicceecee e 1188
42.9. Modules and the unknown Command............ccccceveerierreeniiinienseeneeneeeeeieene 1188
42.10. Tcl Procedure NAMEScoceeriiiieeniieniiiieeieeiee sttt 1189
43. PL/Perl - Perl Procedural Language............ccccccoeoiiiiiiiiiiiiiiiniiicicccce e 1190
43.1. PL/Per] Functions and ATZUMENLS..........cccerververeererentenieretenesressenseeeneeenienaens 1190
43.2. Data Values in PL/Perl.........cccooiiiiiiiiiiiiiiieceee e 1194
43.3. BUilt-in FUNCHONSeotiiiieiiiieeceteetee ettt 1194
43.3.1. Database Access from PL/Perl...........ccocoooiiiiiiiiiiniiieeecee 1194
43.3.2. Utility Functions in PL/Perl.........ccccoccoiiiiiniiiiiininieeeeceeeeee 1197

43.4. Global Values in PL/Perlccccooiiiiiiiiiiiiniiiinceereteesteese et 1198
43.5. Trusted and Untrusted PL/Per]cccoceoviiiiiniiiiniiieneiieenteeeneetere e 1199
43.6. PL/PEIT TIIZZEIS «..veeuveieriieniiniieiteeieetesieeitete sttt ettt ettt ettt sbeeas 1200
43.77. PL/Per]l EVent TIIZZEIScouevueeiiriiiienieniieienitetesteeite ettt et sieeas 1202
43.8. PL/Perl Under the HOOcc.coouiriiiininiiiiniiiiicetcictccetetese et 1202
43.8.1. CONIGUIALION ...veeneieiieeiieiieeie ettt ettt steeteebe e st e sebeesbeesaaesasesnns 1202
43.8.2. Limitations and Missing Features...........cccovvvevverviiineenienienieenieeeeenes 1203

44. PL/Python - Python Procedural Language...........ccoovevieriiiniieniieiieiiesieeieeeesee e 1205
44.1. Python 2 vs. PYhONn 3...cc.oiiiiiiiiiieieeee ettt st 1205
44.2. PL/PYthOn FUNCHONS ...cocuviiiiiiiieiieeieeitesite sttt sttt st eseesiee st sbeebee e 1206
44.3.DAta VAIUES ...c..eouvieieniiieiiieiieieete ettt sttt ettt st sttt et sa et s 1207
44.3.1. Data TYPe MapPing.....ccceereerieriiieniienienieeniteste st enieestesieeebeesneseesaees 1208
4432, NUIL NOIE....vvveiiiiiiiii ettt ettt e e e e e e e e e s e s s sssasaraaneees 1208
44.3.3. ATTAYS, LISES cueiiiiiiieeiieiieeiteeteee ettt ettt st et 1209
44.3.4. COMPOSILE TYPES...veereririiiriieriierieeiterte ettt ettt st ettt 1209
44.3.5. Set-returning FUNCHONS......c..coceeviiriieiiiiiiieiciceeeeeeeeece e 1211

44.4. Sharing Data.......c..cocveiiiiiiinieiiceeee ettt 1212
44.5. Anonymous Code BIOCKScccoieiiriiiiiiiniiiieeeeeeeeecee e 1213
44.6. Trig@er FUNCHONScociiiiiiiiiiiteieeeeeeeteeete ettt s 1213
44.77. DAtabDaSE ACCESS ...c.uveeueeriiirieeiieeiiteeieesttesite st et esbee st e e bt esbeeseteebe s bt e sbteenbeenbeenae 1214
44.7.1. Database Access FUNCHONS......c.cooviiriiriiiiienienieeeeeeeeecceeee 1214
44.7.2. Trapping EITOTSc.cooiiiiieieitieeeeee et 1216

44.8. EXPLICit SUDIIANSACHIONSeveeuieeieierieetieieetiete st et ste et te sttt eaeesaesaeenaeseens 1217
44.8.1. Subtransaction Context Managersceccereeruerueeeeneneenienesieneneens 1217
44.8.2. Older Python VErsionsc..ccceveeiieriiienieniniesieeee e 1218

44.9. Uity FUNCHONS ...c.eeuiiiiiiiiiititeieietetteteseteteeeie sttt ettt s 1219
44.10. Environment VariabIescccoooeeviererieriinieieneetene sttt st 1220
45. Server Programming INEErfaceccooirierieniirieniiniiieceeseteeseee et 1222
45.1. Interface FUNCHONSc.eviiiiriieiiniiierietees ettt 1222
SPILCONNECT «.ceeviiiiieeeeeeeeeeeeeeee ettt e e e e e e e e e e e e s e e s aasaseeeeeaeeseeas 1222
SPILAINISN ..o 1224
SPIPUSH c.eie ettt st 1225

N o N 0T o J OO U UP U SRSTURRRPRRRSRTNt 1226

XXV

S P EXECULE . .vvveeeeeerieee e ettt e ettt eeete e e e eeetre e e e e eetraeeeeeeateeeeeeetreeeeeeearaeeeeeaares 1227

SPI_EXEC.c.utiiiiiiiieeiteteeiteteet ettt sttt sttt st 1230
SPI_execute_ With_args........cccceevuiiiiienieniieieeeeite ettt 1231
SPI_PIEPATE ..ottt ettt sttt st et st be e 1233

S P PIEPATE _CUTISOTeiiiieiiieiieeiit ettt ettt sttt sttt e b e sbteeneeebee e 1235
SPI_PIrepare_Paramscocceceruereeienieerieneeeenieneerenieenesseeneesaesieesnesieennesseene 1236
SPI_EtargCOUNLcc.coiiiiiieieieeeeteeeeteete ettt st 1237
SPI_getargtyPeid.......c.cocveciiriieiieiirieieeeeeee e e 1238
SPIL_iS_CUISOT_PLAN ..uviiiiiiiiiiieiii ettt 1239
SPI_eXECULE_PlaN....eiiiiiiiiiiiiiieiiieeetete ettt sttt 1240
SPI_execute_plan_with_paramliSt........ccocceveereeniiiiienieenienieeieeseenteeeeeieene 1242

P EXECP ettt ettt sttt 1243
SPI_CUISOT_OPEIL..c..eieiiiiiiiieiteeiie ettt ettt sttt ne e 1244
SPI_cursor_open_With_argsccccceeieririeieneiteeeiee e 1246
SPI_cursor_open_with_paramlist...........cccoeceeoeriiieiinieieneeee e 1248
SPI_CUISOT_fIN...ccieiiiiiiiciiie ettt e et e e s saraeeeeeennees 1249

SPI CUISOT_fEUCR ..ot e e eeeaeee e 1250

SPI CUISOT_INOVE .ottt ettt e e e e e e e e e e e e s e e s e aaseaeeeeeaeeseeas 1251
SPI_SCIOIl_CUISOT_TEECH ..t e e e e e e 1252
SPI_SCIOIL_CUISOI_ITIOVE ...evvevieieieeieeeeeeeeeeeeeeeeee ettt ee e e e e e e e e e s e s e e e eaaaaaeeeaeeeeseeas 1253

S CUISOT_CLOSE...eiiieeeeee ettt ettt e e e e e e e e e e e s e e aaaaeseeeeeaeeeenas 1254
SPI_KEEPPIAN «..coveiiiiiiiieiieeete ettt 1255
SPL_SAVEPIANeoutiiiiiiiieierttete ettt sttt 1256

45.2. Interface SUPPOTrt FUNCHIONS ..c..eevuviiiieniieriieiieeieeriie sttt eve e sere e enaee e 1257
N 24 B 37 1 1o [T USRS 1257
SPLNUIMDET ..ccoiiiiiiiieeeeeeeeeeeeee ettt e e e e areeeeeeeeeeas 1258
SPI_ZELVAIUE ...ttt ettt sttt ettt e et enbeeaee e 1259
SPI_getbinValoooviiiiiiiiiiieiiecie ettt st et 1260
SPI_ZELLYPC ettt sttt sttt st e b e 1261
SPI_gELLYPRIA ...etieiieiieeieeiteeee ettt sttt sttt ettt e 1262
SPI_gEtrelNamecovuiiiiiiiieiieiit ettt sttt st st st 1263
SPI_ZENSPNAIME.eeeieiiieiieiieeie ettt ettt ettt et et e st e e beesbeesibeeabeesee e 1264

45.3. Memory ManagZemeNtcoceereerieerieeniienieerieenieesteeeeesieesieeeseenseesisesseenseenne 1265
SPI_PALLOCccuiiiiriieietieet ettt e st 1265
SPIL_TEPAIIOC ...ttt st 1267
SPI_PITEE. ..ttt ettt et 1268
SPIL_COPYLUPIE ... e 1269
SPIL_TELUINTUPIE ...ceeeiniiiiiieiieiteete ettt sttt et 1270
SPL_MOAITYTUPIE ...ttt 1271
SPL_ATEELUPIC. ...ttt ettt 1273
SPL_freetuptable.cc.oeuieiiiieieieeeeee e e 1274
SPL_ATEEPIAN.etitieieetiee ettt 1275

45.4. Visibility of Data Changes..........cccceeererierienieiesieetere ettt 1276
45.5. EXAMPILSeeeieiiiiieieiteeiee ettt ettt b et et sae st saen 1276
46. Background Worker PrOCESSES......cc.eeieriiiiieriieierieeiceie sttt 1280
47. LogICAl DECOTINGeueiiiiiieieitieieeeee ettt sttt sttt et sbe st e nesbens 1284
47.1. Logical Decoding EXamples..........coccererieriiniiiiinieienieneeesiteeesee e 1284
47.2. Logical Decoding CONCEPLScc.evveruerierieniiniieienieeieniesiteniesitete e eseeseesieenaesieens 1286
47.2.1. Logical DeCOAING.....c..cveriiriniiiiiniieieieeieeesteeteseeitete et 1286
47.2.2. Replication SIOtScc.coeriererieiiniieienieneeeseeteseetete et 1286
47.2.3. OUutput PIUZINSvovvieniiiiiieieiieieeetee ettt 1287
47.2.4. Exported SNapSROLS.......c.vevierieeiiieiienieeieeite st 1287

XXV

47.3. Streaming Replication Protocol Interfaceccccevvueevieniinienniennienieeieeieene 1287

47.4. Logical Decoding SQL INterface..........cccocveruienienieniieiieeiesieeieeee e 1287
47.5. System Catalogs Related to Logical Decodingcccceeveerieevierneenienniennieenne 1288
47.6. Logical Decoding Output PIUZINScooviriieiiiniiiiiiieeienieeieeiee e 1288
47.6.1. Initialization FUNCHON.........ccceeiciieeiii et 1288
47.6.2. CapabIlitiescccveereierieiiieiienieeie ettt ettt ettt 1288
47.6.3. OULPUL MOAES......ooovieiiiiiiieieiieieteeeete ettt 1289
47.6.4. Output Plugin Callbackscccoeieiiiniiieiiniiieiccencceeeeeeeee 1289
47.6.4.1. Startup Callbackcoceeviriiiinieiiniicenceeeeee e 1289

47.6.4.2. Shutdown Callback...........ccoueeieeeiiriiiiiiiiiieeeeeieee e 1290

47.6.4.3. Transaction Begin Callbackc.ccoceciiiiiiniiiininiiiinn, 1290

47.6.4.4. Transaction End Callbackcccoooeiiiiiiiiiiiicceceeeeeee, 1290

47.6.4.5. Change Callbackc..coccoueieirinininienieieeeencnesececeeeecevene 1290

47.6.4.6. Origin Filter Callback........ccccccecerininenenieinininenciceeeceeenen 1291

47.6.4.7. Generic Message Callbackccooceviiieiinieiiniieiiineee, 1291

47.6.5. Functions for Producing OUtpuL............ccoceeveririeninienienceeeseeeeeeeene 1291

47.7. Logical Decoding Output WIILETScceerueruierieniieienienienientceie e eeeseeseeneesiens 1292
47.8. Synchronous Replication Support for Logical Decoding..........cccccecevereenenncnne 1292
48. Replication Progress TraCKingcccceverierieririeniinieienceeesie ettt 1293
VI. Reference 1294
L. SQL COMMANGS.......viiiiiiiiiiieeeiee ettt et e et e e et e eetee e s aeeeeabeeeaaeeetseeesseessseesareaans 1296
ABORT ...t ettt e e e e e e e e et e e e ab e e e tbeeetaeeetaeeeteeenaes 1297
ALTER AGGREGATEooioiiieeeeeeee ettt et 1299
ALTER COLLATION ..ottt ettt ettt tv e eave s etaeesaseeeaaaeeavaeens 1301
ALTER CONVERSIONooiiiiiiite ettt ettt et e e etaeesaseesaaaesaraeaan 1303
ALTER DATABASE ...ttt ettt ettt e e tve e s ab e e e aae e eavaeean 1305
ALTER DEFAULT PRIVILEGESoooiiiiiiiece ettt 1308
ALTER DOMAIN ...ttt ettt ettt e ettt e e evee e sbe e e tbeesavaeetseesnsseesasseessseeens 1311
ALTER EVENT TRIGGERcccviiiiiiieieeceeee ettt 1315
ALTER EXTENSION ..ottt ettt ettt et e eave s eeaeeeeaeesasaeesnraeens 1316
ALTER FOREIGN DATA WRAPPERccooiiiiiiieie ettt 1320
ALTER FOREIGN TABLE.........coiioiiiiieeettete ettt ettt eve v seveeveevee e 1322
ALTER FUNCTIONoooiiiiiieee e eeee e eenea e eneeean 1327
ALTER GROUP ... enae e enee s 1331
ALTER INDEX ..ot eaae e eenaeeeaeeean 1333
ALTER LANGUAGEttt 1336
ALTER LARGE OBJECT ... 1337
ALTER MATERIALIZED VIEWcoooiiiiiieeeee e 1338
ALTER OPERATORooneeiee ettt 1340
ALTER OPERATOR CLASS ...ttt 1342
ALTER OPERATOR FAMILY ..ot 1344
ALTER POLICY ..ottt e et e e eeaaa e ereaean 1348
ALTER ROLE ..ot et et et e e e eaae e eveaean 1350
ALTER RULE ...ttt et et et eaaa e eveeean 1354
ALTER SCHEMA ...t e et et e e e aaa e evaeean 1355
ALTER SEQUENCE ...t ettt et et e et e eaaa e eaeeean 1356
ALTER SERVERooiiiiie ettt et et et e aae e eavaeean 1359
ALTER SYSTEMttt ettt et e et e e as e e e aae e eavaeean 1361
ALTER TABLE ..ottt ettt et et e e e tn e e e aae e eavaeean 1363
ALTER TABLESPACE ...ttt et et e e e 1376
ALTER TEXT SEARCH CONFIGURATIONcooooiiiiiieeciieeiee e 1378

XXVI

ALTER TEXT SEARCH DICTIONARYcccccooiiiiiiiiiiiiiiiicicieiceeeeene s 1380

ALTER TEXT SEARCH PARSERccccccoiiiiiiiiiiiiiicicccccees 1382
ALTER TEXT SEARCH TEMPLATEcccccooiiiiiiiiiniiiiiicicccecce 1383
ALTER TRIGGERccoiiiiiiiiiiiiiiiiiiiicce e 1384
ALTER TYPE.....ccoiiiiiiiice e 1386
ALTER USERcooiiiiiiiiiiiiiicee et 1390
ALTER USER MAPPINGcc.oooiiiiiiiiiienienieieetetestt ettt ne s 1391
ALTER VIEW ...ttt ettt sttt s 1393
ANALYZE ...ttt ettt et s 1395
BEGIN ...ttt st s 1398
CHECKPOINT ..ottt 1400
CLOSE ... ettt s 1401
CLUSTER ... 1403
COMMENT ... e 1406
COMMIT ... e 1410
COMMIT PREPARED......ccoooiiiiiiiiiiiiiii e 1411
COPY e s 1413
CREATE ACCESS METHODccccoiiiiiiiiiiiiiiciie e 1423
CREATE AGGREGATEcoueoiiiiiiiirtieeeeteese ettt 1425
CREATE CAST ...ttt ettt et 1432
CREATE COLLATION.......ccutiiiiiiiietntntiteteteeeteiese ettt ettt s 1437
CREATE CONVERSIONooiiiiiiiiiiiiicieeieteene ettt 1439
CREATE DATABASE ..ottt 1441
CREATE DOMAIN......coiiiiiiiiiiiieint sttt ettt s 1444
CREATE EVENT TRIGGER.........cccccociniiiiiiiiiiiiiiccciceteieeeeeeeeeeee s 1447
CREATE EXTENSION.......ooiiiiiiiiiiiiititeiceteee sttt 1449
CREATE FOREIGN DATA WRAPPER.........ccccccociiiiiiiiiiiicieiceccece e 1452
CREATE FOREIGN TABLEccocciiiiiiiiiiiiiicecceeeeeeeeee e 1454
CREATE FUNCTION.......c.cooiiiiiiiiiiiiiiieieeeee sttt 1458
CREATE GROUP.......coiiiiiiiiiiiiiiiicice e 1467
CREATE INDEX.....c.oooiiiiiiiiiiiiiiiii ettt 1468
CREATE LANGUAGEc.ooiiiiiiiiiiiiiicctce e 1475
CREATE MATERIALIZED VIEWccociiiiiiiiiiiiiiiniiiiiicccieeeeeeece s 1478
CREATE OPERATORcooiiiiiiiiiiiiiiiiiiccicc e 1480
CREATE OPERATOR CLASSooiiiiieeeeneeeteeeeree e 1483
CREATE OPERATOR FAMILYccoooiiiiiiiiiiiineieneeeeeeeeee e 1486
CREATE POLICY ..ottt 1488
CREATE ROLE ..ottt s 1493
CREATE RULE ..ottt 1498
CREATE SCHEMA ...ttt 1501
CREATE SEQUENCEccoooiiiiiiiieeee e 1504
CREATE SERVERcooiiiiiiie e 1508
CREATE TABLE ... 1510
CREATE TABLE AS ... e 1525
CREATE TABLESPACE.........ccciiiiiiii s 1528
CREATE TEXT SEARCH CONFIGURATION........ccccoiiiiiiiiiiiiiiiicicccee 1530
CREATE TEXT SEARCH DICTIONARYccoociiiiiiiiiiiiiiiceceee 1532
CREATE TEXT SEARCH PARSERcccooiiiiiiiiiiiiiicicieteeeceeeeeee s 1534
CREATE TEXT SEARCH TEMPLATE.........ccccccociiiiiiiiiiiiniceeceeeeeeee e 1536
CREATE TRANSFORM........oouiiiiiiiiiiintiicictetetetse sttt 1538
CREATE TRIGGER.........ccooiiiiiiiiiiiiiitieteetetetse ettt 1541
CREATE TYPE ...ttt 1547

XXVii

CREATE USER ..ottt 1556

CREATE USER MAPPING........cccoiiiiiiiiiiiiiiicceeeeeeeee e 1557
CREATE VIEW ...ttt 1559
DEALLOCATEooiiiiiiiiiiiiccccee e 1564
DECLARE ..o 1565
DELETE ..ot 1569
DISCARD ...ttt ettt ettt st e ae et sae s snesaeeas 1572
DO et st et n e 1574
DROP ACCESS METHOD.......cc.ooiiiiiiiiiiceetceee ettt 1576
DROP AGGREGATE.........ooiiiiiiiiiiiteeeeeeeetteee ettt s 1577
DROP CAST ...ttt s 1579
DROP COLLATION ..ottt 1581
DROP CONVERSIONottt s 1583
DROP DATABASE ... s 1584
DROP DOMALIN ..ottt s e s s 1585
DROP EVENT TRIGGERcccoooiiiiiiiiiiiiiiiii e 1586
DROP EXTENSION ..o 1587
DROP FOREIGN DATA WRAPPERcccociiiiiiiiic e, 1589
DROP FOREIGN TABLE........cocooiiiiiiiiiiiiieeeeetne sttt 1591
DROP FUNCTION ..ottt sttt 1593
DROP GROUP ..ottt sttt s 1595
DROP INDEX ...ttt sttt et s 1596
DROP LANGUAGE ..ottt 1598
DROP MATERIALIZED VIEWc.ccoiiiiiiiiniiniiieiiine ettt 1600
DROP OPERATORc.ooiiiiiiiiiiiiiiiicicceteeeetse sttt 1602
DROP OPERATOR CLASS ..ottt 1604
DROP OPERATOR FAMILYcccoiiiiiiiiiiiiiicicicicsccceeeee e 1606
DROP OWNED.......ociiiiiiiiiiiiiiieicccee ettt 1608
DROP POLICY ..ottt s 1610
DROP ROLEoouiiiiiiiiiiiiiinctcceete sttt 1612
DROP RULLEcoooiiiiiiiiiiiiiiicc ettt 1614
DROP SCHEMAccoiiiiiiiiiinicteceee ettt 1616
DROP SEQUENCE.......cc.cciiiiiiiiiiiiiiciiiiccee e 1618
DROP SERVER.......ccoiiiiiiiiiiiiiiice e 1620
DROP TABLE ...ttt sttt sttt et 1622
DROP TABLESPACEoooiiiiiiiieiteeeeeeteetete ettt et 1624
DROP TEXT SEARCH CONFIGURATIONccccccoiniiiiiinieienieiene e 1626
DROP TEXT SEARCH DICTIONARYccocoiiiiiiiiiiiieeeeeetcee e 1628
DROP TEXT SEARCH PARSERcc.coiiiiiiiiiieeeeeeee e 1630
DROP TEXT SEARCH TEMPLATE ..ot 1632
DROP TRANSFORM ..ottt s 1634
DROP TRIGGERoouiiiiiiiiiiii e 1636
DROP TYPE.... . e 1638
DROP USER ...t 1640
DROP USER MAPPINGoooiiiiiiiiiiiiiiiiic e 1641
DROP VIEW ..o 1643
END L. 1644
EXECUTE ..ottt sttt et s 1645
EXPLAIN ..ot 1647
FETCH ...ttt sttt ettt s 1652
GRANT Lot sttt 1656
IMPORT FOREIGN SCHEMAccoooiiiiiiiiinieieieine ettt 1663

XXVili

LISTEN ..ottt 1672
LIOAD ..ot 1674
LOCK .t 1675
MOVE.....coii e 1678
INOTIFY .o 1680
PREPARE ...ttt sttt sttt e 1683
PREPARE TRANSACTIONc.eotitiieietntinteniententeteiesie ettt ettt seeneeae e naens 1686
REASSIGN OWNED.......cciiiiiiiniiteicieteitetenentetetee ettt ettt saens 1688
REFRESH MATERIALIZED VIEWccoiiiiiininiininenenteteeeteiesiesieneeeeeeeesie s 1690
REINDEX ...ttt ettt ettt sttt et ea sttt sae e 1692
RELEASE SAVEPOINTccooiiiitititeietetntesenteeeeeie ettt eve et saens 1695
RESET ..ottt ettt sa ettt ettt s 1697
REVOKE ...ttt ettt sttt ettt s 1699
ROLLBACK ...ttt sttt ettt sttt sttt ettt e et e 1703
ROLLBACK PREPAREDcociiiiiiiieiniitentenieeceeese ettt ettt 1704
ROLLBACK TO SAVEPOINTccoeiiiiiiiiiienicieeetee ettt ettt 1706
SAVEPOINT ..ottt sttt ettt sa bt s 1708
SECURITY LABEL......ciiiiiiiiiiiieie ettt ettt s 1710
SELECT ...ttt sttt ettt ettt s 1713
SELECT INTO ..ottt sttt s 1734
SET ettt ettt s 1736
SET CONSTRAINTS ..ottt ettt s 1739
SET ROLE ...ttt s 1741
SET SESSION AUTHORIZATION........ccooiiiiiiiiiiiiinieicieieeeeeieeieeeeeiteeee s 1743
SET TRANSACTIONoouiiiiiiiiiiiiiiiteieeeeese ettt 1745
SHOW .ttt s 1748
START TRANSACTION ..ottt 1750
TRUNCATEooiiiiiiiiiiiiice e 1751
UNLISTEN. ...ttt s 1754
UPDATE ...ttt 1756
VACUUM ...ttt 1761
VALUES ..ot 1764
II. PostgreSQL Client APPIICALIONScccouirieiiriirieniiriereneerere ettt 1767
CHUSTETAD ...ttt e s 1768
CIEALEAD. ...t 1771
CIEALBLAIIZ ...ttt ettt ettt s st e e sae e e enea 1775
CTEALEUSET ...ttt ettt et s b e e e b st e e b e e b e e s e e eaneebeesaeesaneeneenns 1778
AIOPAD ettt sttt sttt st be e 1783
16107 0) L1 V< OSSR PO SRURRRPR 1786
ATOPUSET ...ttt et st et nesreas 1789
EOPE ettt sttt e a e bbb sae e e b e 1792
PE_DASEDACKUP ...ttt 1795
PEDENCH. ...ttt ettt 1802
PECOMIIG 1.ttt ettt b et b et e bt st e e e b e ettt e st e nae bt e aenbeens 1815
PEQUITID .ttt b et bt et be st b et b e eate b s bt e naeebeens 1818
PEAUMPALL ...ttt st 1830
PEASTEAAY ..ttt ettt ettt b ettt ebte b st e naesbeens 1836
PETECEIVEXIOZ ..ttt ettt ettt st b et sttt sae st e e sbeeas 1839
PE_TECVIOZICAL ..ttt ettt et st 1843
PE_TESLOTE ...ttt ettt ettt ettt et et st e bt et e eb e ea e st e e bt e sae s bt et e sbteatenbeebeenaesbeenenbeens 1847
1016 | RO PR URUSRUPRRPRRRIPRINt 1856

XXIX

1016 (€ Lo TR OSSP P PPN 1891

VACUUINAD ...ttt ettt ettt et s e et e bt e sabe st e e bt e ssbesabeenbeesatesanesnss 1895
II1. PostgreSQL Server APPLICAtIONSc...eeverrieerierieriienitente st esieeste st esbeesieesiteenbeesieesane s 1899
INTEAD .ttt st ettt st et e bt e st e b ebee e 1900
PE_ATCRIVECIEANUD ...eeiiiiiieiieite ettt sttt st ettt ebeeae e 1904
PE_CONLIOIAALA ...ttt ettt et s nesieas 1906
P CtL ettt et s n e 1907
PETESEEXIOR ..ttt et s 1913
PETEWINA ...oniiiiiiiiieie ettt sttt e s 1916
PE ST ESYIIC .ot e 1919
PE ST IMING ..ooeiniiiiiiiiieiieieee ettt e st st s 1921
PEUPETAAE ..ttt ettt sttt et st ettt sttt e bt e st e e b e e 1925
PEXIOZAUMP ...ttt sttt sttt ne e 1932
POSEETES ..ttt ettt ettt ettt ettt e e et e sb e s et ettt e bt e e bt e sna e e s b et e e b et e bne e sareeeas 1935
POSTMASTETeeiitieeiiee ettt ettt ettt ettt e e e s aa e e e sbe e e et e e snneesabeeeebeeesaneeesareeean 1943
VII. Internals 1944
49. Overview of PostgreSQL INternalsccoceierieriinieninieieneeteeeee et 1946
49.1. The Path of @ QUETY ...c..eoiiiiiiiiiiriiieeetee ettt 1946
49.2. How Connections are Establishedc.cceoievieriiiiieniieieiiecieece e 1946
49.3. The Parser STaAZecoceeieriirieiiineeierieeiteiesitet sttt sttt et e e sbeeas 1947
4.3 1. PATSET.c.uvieueeeeiieiieiee et ett et e et e ettt e st e et e e bee st e eabe e beesaaeenbeenbaenaaeenbeenres 1947
49.3.2. Transformation ProCEeSS........cccueevvierierieeiieeniienieeieesieesee e eiee e eae s 1948

49.4. The PostgreSQL Rule SYSTEM ...cc.eievvieriiiriiiiieiierieeieeieeite e eieesieesre e siee e 1948
49.5. Planner/OpPtmIZeTc..ceevierueerierieeieenieeniteeteesteesteesteesseesteesssesseesseesssesssessseenns 1948
49.5.1. Generating Possible Plans............cocceevciiriiiiniieniiniiiieneeciecieeeeee e 1949

4.6, EXECULOTveeuiieiiiieiieniieeiie ettt sit st e it esbtesabe e bt esbeesabeesbeebtesebesnseeseesasesnseeseenns 1950
50. SYSLEM CALALOZS c.veeeveriieetieriieeiteitte ettt ettt et et e st e st e esbeesatesabeebeesseesatesbeenseenneens 1952
SO. 1. OVEIVIBW ..ottt sttt ettt ettt ettt st e s bt e sabesabe e bt e s st e sasesnbeesstesanesnses 1952
RV R Yo f=Ye (o b =Te 1= N ok =R OO USROS TRRTRRRIRt 1953
50,3, DG AM ettt ettt e e e e e e e e et e e e e eeetraeeeeetraaeeeeatraeeeeannes 1956
504, DG BMOP teetieetrreeeeeeireee e eeeitree e e eeett e e e e et e e e e et ae e e e e e etaa e e e e eetaaeeeeetraaeeeantaaeeeeanaes 1957
{0 RS oY BN o3 ot Yo B SUSURUPRIN 1958
{0 KON oY B o ol e [S SRUSUPRIN 1958
ST A <Y B o ook 1 <2l =S USSP 1959
50.8. PG_BUE NI ittt eeieeertee et et e ettt e et e et e e rbeeetbeeenbeeenaaeanneeennes 1962
50.9. PG_AUL N _MEMIDET S ctiieeiieeiiieeriieeieeeiteeetteestteesbeeessbee e sseeesseesssseesnsseesnseeennes 1963
L0 L0 e S o T W= USSP 1964
L0 I B o Te S = F= = USSP 1965
50,12, PG COLLAT I 0N tieeetiteeieeeiieeertee ettt eette e ettt e steeesbeeesnbeeessseeesseeessaesneaeaseeennes 1970
50.13. PG_CONSETAINT teeititieiieeiiieeriee ettt te et e et e e aeeeesabeeesteesnneaesnseeennes 1970
50,14, PG CONVEISION tertitieiieeiiteeieeetee ettt ettt e e e e st e e eateeeeateeeabeeeaeeesnneeesnseeennes 1973
50,15, PG At ADASE ctiieetie ettt ettt e e e et e et e e et e e eetae e eeaaeeeaeeeeans 1974
50.16. PG_db_ 0l e _SEtEING tiiiiiieeiiieeetiee et e ettt e eeee e et e eeteeeeaeeeetae e eeaaeeeeaeeeereeeeans 1976
50.17. PG_AEFAULE_ACL attiiiiieiiiiiieeeiiteeeeercteee e e erre e e e e sette e e e estraeeeeearraeeeesnraeeeeennnes 1977
50,18, PG _AEPENA ittt ettt et et e et e e et e e eaaeeeaeeeeans 1977
50.19. PG e S CTaPEiOM ctiiieiieeciie ettt ettt ete e et e et e et e et e et e et e eaaeeeteeenans 1979
50,20, PG ENUM ciiittiiiiitie ettt ettt eette e et e e et e e eete e e e teeeeveeeeaseeeeasaeeetseeeesseeeseeesseeenaes 1980
IO R Yo = A4 =Y o Rl ook e fo 1= cBNUU O SSRRTRRRRRPRRRRINt 1980
50,22, PG EXEENSION tiertrriiiieitiiee e eeetteeeeeeee e e eere e e e eetae e e e eerataeeeeestraeeeeentareeeeeaaes 1981
50.23. pg_foreign_data _WIAPPET eeeeireeeeeerireeeeeesiteeeeeeiireeeeeesireeeeessssreeseesnnes 1982
50,24, PG fOTEIGN_SEIVET tirtreeieeeetreeeeeeiteeeeeesiteeeeeeeiteeeeeeeiteeeeeesisreeeeesnrrreeeennsnes 1983

XXX

50.25.
50.26.
50.27.
50.28.
50.29.
50.30.
50.31.
50.32.
50.33.
50.34.
50.35.
50.36.
50.37.
50.38.
50.39.
50.40.
50.41.
50.42.
50.43.
50.44.
50.45.
50.46.
50.47.
50.48.
50.49.
50.50.
50.51.
50.52.
50.53.
50.54.
50.55.
50.56.
50.57.
50.58.
50.59.
50.60.
50.61.
50.62.
50.63.
50.64.
50.65.
50.66.
50.67.
50.68.
50.69.
50.70.
50.71.
50.72.
50.73.
50.74.
50.75.
50.76.

Yo MR e =5 Kot oM ul=1 o 1 I =Y U U EURROSUTRN 1984
oY M oL 1= 5 ST USROS 1984
Yo M o) Y= ok K it T U U TR USROS OSSP 1987
Yo M B o N ol o % o v - USROS USSR 1987
PO LANGUAGE ttrtieeeeitrrieeeeiitrreeeeeeiteeeeeeetrreeeeeetaeeeeeessseeeeeestrseeeseaseseeseessreeeeeans 1988
jole MR R= B e 1-Yo) o by 1= Yox oiNUUUN U U U USROS UUURR OSSP 1990
PY_largeobject_MEtAdAta .uceeeereiiieeeeeiieeeeeeiieeeeesieteeeeeibeeeeesenreeeeenes 1990
PO_NAMESPEACE teteeerauuerreeesarrreessaassrteessaassreessamssaeeessamsseeessmssseessmmseeeessmmseeesanes 1991
Jo1 He) YR I N == DR SPPUR TP 1991
PO _OPET AT OT tttteeeuitieeeeaitteeeeaietteeeaateteeesaaattteeesaseteeeesanseteessasareeessaseeeeesnanses 1992
PO OPEAMI LY tttttiiiitieteeiitee e ettt e e ettt e e e ettt e e e sttt e e e e snbet e e e s bt e e e e s bateeeeentee 1993
PO P LEEMPLAETE tiiiiiieiieiitee ettt ettt e ettt e ettt e e et e e st e e e e et e e e e nneee 1994
o1 i 1o Y A) OO OO PPURPRPPPRRRRIRt 1994
o1 L S5 o Yo U OO PO PPUR PPt 1995
PO L ANIGE ciieutiieeeeeiireeeeeetteeeeeeetaeeeeeettaseaeeeastsseeeaasssseeaeaassaseeseansaaeseeaanbaseaeeannres 2000
PY_replication _OrigiN e eeiire e e e et e e e eeae e e e e eebaeeeeeennnes 2001
oY M et o I ol =S U U TP UUURR TP 2002
PO_SECLADEL tttiiiieiiiiiee e ettt e e eeite e e e eetee e e e etbae e e e e tbae e e e e abareeeearbaaeeeeaarraaeaans 2002
PO_SHACPENIA cutiiieiiic ettt et e e et et e et e e et e e et e e e ett e e etr e e eaeeeereaeas 2003
PO ShAe S APt Omuiiiiiiiiiiiiieiie et e et eete e ettt e eetr e eetaeeeete e e eteeeeaneeeareeans 2004
PO_ShSECLADEL tiiitiiiiiieeeiie ettt ete e eete e e tte e et eeeetre e etaeeetaeeeteeesaaeeeareaans 2005
PO St AT A ST AT tttiieiiiiiiiee et e ettt et e eet e e te e et eeetb e e eta e e eta e e etee e eataeeearaaans 2006
1S R o=t RN =] o F- Y= SRRSO 2008
PO LT ANS FOTM tttiiiieiiiiieeeieieeeeeeeeieeeeeeetareeeeeebareeeeesareeeeeeesaareeeeenssereeseeaseeeeeins 2008
1o MR uh ok Ko fo 1= % BN USROS 2009
joYe MR R =T cle Yo b ik e HUNUUU USROS 2011
jole MR uR-TiNle Yok sk Ko b 1=Y < YOURUUUUUN TS SRRSO 2011
JoYe MR =T e & K o) USROS 2012
PO LS PAT SO tttieieeirrieeeieiereeeeetireeeeeeetareeeeeeitareeeeesaeeeeeeetaseeeeenbereeeensareeeeeans 2012
JoYe MR =T =11} o B = o = SO U U ST 2013
oY MR w74 o 1= TSSO U TR USROS UEURR OSSN 2014
jYe MRDE-T=3 ol =Y o) o 3 B o Yo SUUNUNNUUU OO U TR USROS U USSR 2022
SYSEIM VIEBWS .ttt ettt ettt sttt ettt ettt e st sbeesaeesaee s 2023
PY_available_eXTEeNSIiONS . eiiieeeeeeiieeeeeeeitreeeeeeereeeeeeeiareeeeeeas 2024
pPg_available_exXtensSion_VeTSIiONS .cciiiiiiiiereeereeeeeeeeeseeeennnesnrenees 2024
o1 M ele) o itk e PRSPPI 2025
PO CU T SOT S tuutitteesauerteeesateteessaneteeeeaassteessaansaeeessassteeessanseeeesssansaeeessansseeesanen 2025
o1 TN B R Y =1 o ol 1 o U 1= DO OSSO PRPPPRRRRRIRt 2026
PO T OUD tetuuttteeeeaurtteeeaauueteeeaaauetteeeaaaseteessaststeeesabateeeeanbaeeessansabeeessanbateeeenantes 2027
PO A X S uttiieieetitieeeeetee e e eeete e e e eette e e e e ettt e e e eetareeeeeettaraeeeetaaeeeeeenbaeeaeeanres 2027
PO L OCK S titetttieeeeeitte e e eett e e e eeett e e e e ette e e e e eetta e e e e eetaaeeeeaarraaeeeeetaaeeeeeanbaeaaeeanres 2028
PO MAEVIEWS teriieeiiiieeieeiiteeeeeeitteeeeeeittreeeeeeteeeeeeesereeeeaesraseeeeestessessassaseaesannees 2031
PO PO LA CA@S tiiiiiiiiiiee ettt e et e et e e e e et e e e ettt e e e e e etaa e e e e e nbaeaaeennntes 2032
PO_prepared_StatemMeNT S i iiieeieiireeeeeeitrreeeeeeteeeeeeerreeeeseeraeeeeesasnes 2033
PO _PrEPATEA_XACES tiiiiiicireeeeeiirreeeieiteeeeeeetaeeeesessreseesaesrseeessssaseesssssseseensns 2034
Pg_replication_0rigin_STatUS..iiieeiiieeeeiiieeeeeeieeeeeeenreeeeenes 2035
PO TePliCation_SLOTS oiiiiiiiieiiieeeiieeeieeeeteeeetteeeetreeeetaeeeeteeeeeteeeeaeeeereeens 2035
PO T 0L S tittiiieittie ettt ettt e et e e et e e e ete e e et e e e ete e eetae e e ttaeeetbeeeetaeeetteeeteeeeteeeareaans 2037
PO TULES tiitiieetiie ettt e eitee e et e eeteeeeteeeetteeeaateeeetaeeetraeeesseeesaeeetseeentseesaseeeanreeans 2038
PO SECLADELS wtiiietiiieiiee ettt eetee et e ettt e e ettt e e ae e et e e etr e e etae e etteeetaeeeaaeeereaans 2038
TS BT R s oL 1= TR 2039
1S M=) o T= Yo L) BN REURROSSUTN 2041

XXXI

LA e =3 o= o= S USROS PRPRTRRRRt 2042

R R A T e i =Y < K=Y SO U RO USSR URUPRTRRRIRt 2045
50.79. PG _tiMEZONE _ADIDTEVS wuiiiiiiiirieeeeeitreeeeeeritreeeeeeeiteeeeeeeereeeeeeeisreeeeeeerreeseenennes 2046
50.80. PY_t IMEZONE_NAMES cerrrreeeeeeirreeeeeiireeeeeeiireeeeeetisreeeeesirrreeeeesisreeeeesesreeseesenes 2046
508 . PG ST ettt ettt e e e e et e e e eetra e e e e eetaaeeeeanaes 2047
IO R oTe BIRCE=T=8 ol (Y o) o 1 o Ve 1= DU SUSUPRIN 2047
ORI TR oo v = = USSP 2048
51. Frontend/Backend ProtoCol............cooueiiiiiiiiniiniiiieeteeteeeetete ettt 2049
ST OVEIVIBW ..ottt ettt ettt ettt e b e sttt b e sabesate s beesbtesanesates 2049
S5T.1.1. MeSSaging OVEIVIBW.........ccuevieiiiririeniiniieieieeeeee et 2049
51.1.2. Extended QUery OVEIVIEWcccoceeiiiiiiiiiiiiiieie e 2050
51.1.3. Formats and Format Codesccoveeriiriinnieniiniieiieeeseeeeeeeeneeen 2050

51.2. MESSAZE FIOW ...ttt 2051
ST.2.1. STATT-UP . ettt sttt e 2051
51.2.2. SimPIe QUETY ..couveiiiiiiiieiieieeeee ettt 2053
51.2.3. EXtended QUETYcccueruieuieiiiniieienieeienie ettt 2054
51.2.4. FUnction Call.........ccooiiiiiiiiniiieneeee et 2057
51.2.5. COPY OPEIAtIONSeerverueeuiinieenienieniienienitetenteeitenieseeenaesaesetesiesieeeesseene 2058
51.2.6. Asynchronous OPerations..........ccoceeeeruereeruenierienieneenenieseenieseeseeneeenes 2059
51.2.7. Canceling Requests in Progress........coccevevvererienincenencnieneneeenee 2060
51.2.8. TerMINATION ..c..eemveiieiiitieiieieeteete ettt sttt et 2060
51.2.9. SSL Session ENCryption..........cocccveeienerienienienienineeneneetenieseeeeseeenee 2061

51.3. Streaming Replication Protocol...........cccceoireiviineniininieniineeienceieesceeee 2061
51.4. MesSage Data TYPEScouverviruieieniiniieiinieete ettt sttt saeene 2067
51.5. MeSSAZE FOIMALSccveeiiiiiieiieiiecite ettt ettt st e st e sateenbeesanesaaesnns 2068
51.6. Error and Notice Message Fieldscoccveviiiiiiiieiienieciccieeseeie e 2083
51.7. Summary of Changes since Protocol 2.0.........cccecvevierierciienienienieeieesieeeeee 2085
52. PostgreSQL Coding CONVENTIONSevvieiierierieeiieniientesteenieeseessteenieesseessessseesseesseens 2087
52.1. FOTTNAEIE ©eovveevieeiiieiieiie sttt ette st ettt et steeteesbeesbe st e ebeessbesaseenbeesstesanesnss 2087
52.2. Reporting Errors Within the Server..........ccovvvveriiiiieniieniieienieeeeeereeee e 2087
52.3. Error Message Style GUIAC........c.covuiiiiiiiiiniiinienieeneeeteeie ettt 2090
52.3.1. What GOES WHETEcc.cecveiiniiiiniinieienecteitetete st 2090
52.3.2. FOIMAtNEceoutiiiieiieniie ettt ettt sttt ettt ettt st s esaeesaee s 2091
52.3.3. QUOLAtion IMATKSeeeviiieciiieeiiieeiie et stee et e e e e e e b e e sreeeeraeenee 2091
52.3.4. USE Of QUOLES......eeeierieeieiieeiiieeiieeeiieeeieeesrteesseeeereeessseeessseesnsseessseeennns 2091
52.3.5. Grammar and Punctuationc...cecceeveiriiieneenienieeneeseeneeeieesee s 2092
52.3.6. Upper Case vs. LOWEr Casecocceueiirieieniieieiiecicneeeereeeeeeeeeeee 2092
52.3.7. Av0oid Passive VOICEcocueeruiiriiriiiiieniteeieeitetcete ettt 2092
52.3.8. Present vs. Past TENSEccc.eevuieriiriiiiieniciieeeeeene ettt 2092
52.3.9. Type Of the ODBJECL......ccceriririirieiiieieintieesteeeeeeee ettt e 2093
52.3.10. BIACKELS. .ccuveeeuiiiiiiiieeitieieeeeeete ettt 2093
52.3.11. Assembling Error MesSagesccceveruererieniereeinenenienrenrereeeneerennene 2093
52.3.12. Reasons fOr EITOrs..........ccieiiiiririeeiieieiee e 2093
52.3.13. FUNCHON NAMES ...cuvetiiieiieiieiesieeteie ettt 2094
52.3.14. Tricky Words t0 AVOId.........coeeuevieiriniininieniceieene e 2094
52.3.15. Proper SPelling.........coeeieriirieiieninienieeiteeieete et 2095
52.3.16. LOCAHZAtION.eeuiiniiiiiieiieicete sttt 2095

52.4. Miscellaneous Coding CONVENTIONSc.cevvereerierierienieniienienieetenieseeniesseeneeneeenes 2095
52.4.1. C Standard........oocooeevieniinieiinieeneeee e 2095
52.4.2. Function-Like Macros and Inline Functions..........c..cceccvcevveneneenienenne. 2095
52.4.3. Writing Signal Handlerscc.cocevvieniiinnininieninincneneneseeeee 2096

53. Native Language SUPPOTt......cccocueririeriirieiinieeienieeitentesieeitesteeteete st eee e eseesiesieenesaeenee 2097

XXXIT

53.1. FOr the TranSIatorcoovviiiiiiiiiiiee e eecreee e eeette e e eeree e e eeetreeeeeeearreeeeeennes 2097

53.1.1. REQUITEIMENLSeouvieiieiiiiiieiieeiie ettt ettt ettt et siee st sbeesaeesaee s 2097
53.1.2. CONCEPLS...eeereruiieiieniieeiteeiee e st st et e st e sabe e bt e it e sateesbeesbeesatesabeenseesaeean 2097
53.1.3. Creating and Maintaining Message Catalogsccoeeevveeriirnieeneennnen. 2098
53.1.4. Editing the PO Files
53.2. For the PrOrammer.........c..coccevueiiirieniinienieneeteneerereeeereere e
53.2.1. Mechanics...................
53.2.2. Message-writing GUidelinesc.ccccceeveeiiininiininiencnieeeneceee 2101
54. Writing A Procedural Language Handlerc..occooiiiiiiiiniiiiniceceece 2103
55. Writing A Foreign Data WIapPercocoecuiiiiiiiiiiieiiniceeceececeeeee e 2106
55.1. Foreign Data Wrapper FUnctionscccocceoiiiiiiiiininiinicencceeeeeeeee 2106
55.2. Foreign Data Wrapper Callback Routines............ccceceeievinieieninieneeiceee 2106
55.2.1. FDW Routines For Scanning Foreign Tablesccccoovevreiinienennenne. 2106
55.2.2. FDW Routines For Scanning Foreign Joins........c.ccccoccvevevvenieieenennenn. 2109
55.2.3. FDW Routines For Planning Post-Scan/Join Processing.............c.c...... 2109
55.2.4. FDW Routines For Updating Foreign Tablesccccoovereieninienennenne. 2110
55.2.5. FDW Routines For Row Lockingcccceceviiieniniininiiienciceeee 2114
55.2.6. FDW Routines for EXPLATIN ..cccevirierieriieienieeiieniesieeneesieeieeniesieeee e enee 2116
55.2.7. FDW Routines for ANALYZE......ccccceviiiiiiiniiiinciieieceec s 2116
55.2.8. FDW Routines For IMPORT FOREIGN SCHEMA.......ccooeviviiiuiirunnennnns 2117
55.2.9. FDW Routines for Parallel EXecution...........cccccecevivinineniccieieieennenn. 2118
55.3. Foreign Data Wrapper Helper FUnctions...........c.ccecveverienineeniencnieneneeienene 2118
55.4. Foreign Data Wrapper Query Planning.........cc.ccoceecvevienieninenncncnieneneeienene 2119
55.5. Row Locking in Foreign Data WIappers.......cccccoeeveriereenieneenieneneeneneeeeneeenes 2122
56. Writing A Table Sampling Method..........ccceeviieiiiiiienienieeiieeeeee e 2124
56.1. Sampling Method Support FUNCHONSeevvieriiriiiiieeiecieeieeseeeee e 2124
57. Writing A Custom Scan ProVIderc.cocieriiriiiiiienieniecieeeesteseeeeste s 2127
57.1. Creating Custom Scan Pathsccoceeiiiiniiniiiniiiieiecceeee e 2127
57.1.1. Custom Scan Path Callbackscccccoverieciininiiininiininiiiccnecicee 2128
57.2. Creating Custom Scan Plansccoceeviiniiniiiniienienieceeeeeteee e 2128
57.2.1. Custom Scan Plan Callbackscccccoereeiieninvenincencnenieneneeeeneene 2129
57.3. Executing CUSLOM SCANSeecveertieriieiiieiieniieeieeieesiteste et enbee st e eateebeesaeesaneeaees 2129
57.3.1. Custom Scan Execution Callbacksccccceeeceenirienenenienenieienene. 2129
58. Genetic QUETY OPLIMIZET ...c..eevvieiiieriieeieeiieriteete ettt sttt sttt e bt e st e beesaeesaee s 2132
58.1. Query Handling as a Complex Optimization Problem..............c..ccccceeeiiennne. 2132
58.2. Genetic AIZOTItIMScccoouiiiiiiiiiiiiiiieee e e 2132
58.3. Genetic Query Optimization (GEQO) in PostgreSQLccoceeviiiiiniennnnnne 2133
58.3.1. Generating Possible Plans with GEQO............ccccccoceiininiiiiniiine 2134
58.3.2. Future Implementation Tasks for PostgreSQL GEQO 2134
58.4. Further REadingc.covueiiiiiiiiiiiiiiiiieeeeeeeeete ettt 2135
59. Index Access Method Interface Definitionccccoeceerireeiienieieneseee e 2136
59.1. Basic API Structure for INdeXescecvererierienerieieeieeeee e 2136
59.2. Index Access Method FUNCHIONS..........cocveririiieiiiieieeeece e 2138
59.3. INAEX SCANMINGcovervirririiieiieiiiente ettt st ettt ebe et sae e e eneeaesaesaens 2143
59.4. Index Locking Considerations.............ceceerereerienerienienienienieeee e see e seeeee e 2144
59.5. Index Uniqueness CheCKS..........couerieririeninieienieeieieetcee et 2145
59.6. Index Cost Estimation FUNCHONS.........cccceciriiininiinieieiiieieieceeeeceene s 2147
60. Generic WAL RECOTAScccovriiiriiiiieieiciinenestceetet ettt s 2150
61, GIST INACXKES....coueeuiiiiiiiieieieet ettt sttt s st s 2152
61.1. INrOQUCEHION ..viiiiiiieieicieiet ettt s 2152
61.2. Built-in Operator CIASSESc.coeeverierierieneeienenteiesieetesieeeesee st siesieensenaeenee 2152
61.3. EXIENSIDIIIEY ...couveiiiiiiiieiieiciceest ettt 2153

XXXI11

61.4. IMPIEMENTALION......eiitiiiiiiieeieeiie ettt ettt sttt e st e sateebeesaaesaneeanas 2161

61.4.1. GiST buffering build.........cc.cocceviniriininieiieceeeeeeeeee 2161

61.5. EXAMPIES ...eouvieiiiiiiiiieiie sttt ettt ettt ettt st e be e st st e e bt e s eats 2162

62, SP-GiST INAEXES ...c..eouveniiriieiieiieiericeteeee ettt ettt ettt s e ne s sae e 2163
62.1. TNIrOAUCHION «...ueniiiiiiieiieic ettt e 2163

62.2. Built-in Operator CIASSEScoeecveriieeeruinieienienrereeieereereeee e eeesre s enesneeee 2163

62.3. EXEENSIDIILY ...eeueeiiiiiitiierietctcteenc ettt e 2163

62.4. IMPIEeMENTAtION.....co.eiiiieiiiiiiieieieeiee ettt 2170
62.4.1. SP-GIST LIMILS..c..eoteiiiriiiiriinteieieteeeteeesteneeeetee et e v e 2170

62.4.2. SP-GiST Without Node Labels.......ccccceveveneneneiininininiecececeennenee 2171

62.4.3. “All-the-same” Inner Tuples..........ccccoeiiiiiiiiiiniiiiceccceeeee 2171

(YT 2 1111 o) 11 OSSR 2171

03, GIN INACXESeeneeeeeiieieetiete ettt ettt ettt et et s at et e s bt et e st e es e et e saeentesaeeseebeeseeneenaeenee 2172
63.1. TNEFOAUCTION ...ttt ettt et be st sb et e e ens 2172

63.2. Built-in Operator CIASSESecveeierieeierierieeiesieetenteeseeee st eeeseesee e seeeneeseeens 2172

63.3. EXIENSIDIIIY . ..ceueetieiieiieiiee ettt bbb 2173

63.4. TMNPIEMENTALIONeeuteiieiieie ittt ettt st et e sttt e b eaee e ene 2176
63.4.1. GIN Fast Update Technique...........coccevuerienieniinienineeneneeeeeeeeeeee 2176

63.4.2. Partial Match Algorithmcccoocevviiniiiiiiniiiinee e 2176

63.5. GIN Tips and TTICKSeoueeruiriiiieitiiieieetete ettt 2177

63.0. LIMITATIONS .c..eeutetiiiietieiieie sttt ettt sttt ettt ettt sbe s et sbe e b enee 2178

03.7. EXAMPLES ..ottt sttt ettt sttt 2178

04, BRIN INAEXES ...cuveveriienieniieienieetenie ettt ettt sttt ettt s ettt s e sae e 2179
64.1. TNEOAUCTION «..c.veniiiiiiieiieic ittt 2179
64.1.1. IndeX MaiNtenanCe........ccceeeuereeiererienienietenieeteneeseeenee e eirente s eee e enee 2179

64.2. BUilt-in Operator ClaSSESceeveerierrieerieeniieeieeiteentestesteesieesresseeseesssesanesnnes 2179

64.3. EXIENSTDIIILY ...couveiiiiiiiieiieicrieetesi ettt 2180

65. Database PhySical STOTQZEcccveervieriiriiiiieniieeie ettt ettt st ettt et esaee e s 2184
65.1. Database File LayOul.........ccooviiiiiniiiiiiiieiieeieeeeite ettt 2184

65.2. TOAST ...ttt ettt sttt ettt at et sae e sae e 2186
65.2.1. Out-of-line, on-disk TOAST StOTaZEcevverrreeriiriieiierienieeieesiee e 2187

65.2.2. Out-of-line, in-memory TOAST Storage..........ceeceevveerveeneeneernieeneennnenn 2188

65.3. Free SPAC MAP ..c.uviiiiiiiiiiieieeteee ettt ettt 2189

65.4. VISIDILILY MAD ...ccuiiiiriiiiiriiicicietr ettt ettt e 2189

65.5. The Initialization FOTKcoccoiiiiiiiiiiiiiieetee e 2190

65.6. Database Page Layoutcccooieieiiinieiinieeneeeieeeeeeeeee e 2190

66. BKI Backend INtErface.cccueeueiiiiiriiiiiiiiieitceieeeeteete ettt 2194
66.1. BKI File FOIMALc.cocevuiriiiiiiiiintitccteceee ettt 2194

66.2. BKI COMMANGSooveiiiiiiiieieeieeiieeeeteenite ettt sttt ettt e 2194

66.3. Structure of the Bootstrap BKI File........c..cccccevininininiecinininincncceceecncene 2195

60.4. EXAMPIEoomiiiiiiiiiiiii e e 2196

67. How the Planner USes StatiStiCS.......eoueruiruierieriieieriesiieiesiteie st eicete st ee e 2197
67.1. Row Estimation EXamPples..........cccoeiviirierieriniininieninicicieeeceresresieeeeeieeese s 2197

67.2. Planner Statistics and SECULILYcceeieririerieneeieieettee et 2202
VIII. Appendixes 2204
A. PoStgreSQL Error COUEScc.uivuiiiiriiiieiiniieiesieeitente sttt ettt st 2205
B. Date/Time SUPPOITeoueiiiiiieiiiieiieieeitente sttt sttt ettt st ettt et sbe et e et e sbesseebesbeens 2213
B.1. Date/Time Input INterpretationo.coeeeerierierienerienenteieneetenee et 2213

B.2. Handling of Invalid or Ambiguous Timestamps.........c.cceceevvereeveenerreeneneenenens 2214

B.3. Date/Time Key WOTdS........cocvveriiiiiiiieiienie ettt sttt st eveesieesevesseeniee e 2215

B.4. Date/Time Configuration Filescccoocieriiiiiieniiniiiieeieeee e 2216

XXXIV

B.5. POSIX Time Zone SPecifiCationsccceevverieerieenierieerieeniiesieeieenieeseeeseenieenns 2217

B.6. HiStOry Of UNILS ...coovieiiiiiiiiiieiesite ettt sttt ettt eiee e 2219
C. SQL KEY WOTAS.....eeiiiiiietieiieeit ettt ettt ettt s e st e sbeesatesat e esbeesstesatesbeesaenanes 2221
D. SQL CONOIMANCEccuvviiiiiiieiiieeiieeiee et et e stte e et e estaeesbeeesebeeesseessseesnsseesssseessseanns 2244

D.1. SUpported FEATUIEScovuiiiiiiieiiieieeiteite ettt st st 2245

D.2. Unsupported FEAtUIEsc..cocuevuiriiiienerieiiniieieniceeene ettt 2261
E. REIEASE INOLES ...veeiiiiiieiieeiteeeet ettt ettt ettt ettt et e st st e e sbaesaneeates 2276

E. 1. REIEASE 9.0.20) ettt ettt sttt sttt ettt 2276

E.1.1. Migration to Version 9.6.20..........ccccoceriiiiniiininiiniiiececreeeeeeeeeeee 2276
E 1.2 Changesoouioieiiiiiieeeeeee et 2276
E.2. REIEASE 9.0.19 ..cniiiiiiiiieee ettt ettt st 2279
E.2.1. Migration to Version 9.6.19........ccccccevrvinininenenieinineneseeeeeeieeeniene 2279
E.2.2. Changescc.ooiiiiiiiiiieces e e 2279
E.3.Release 9.6.18 ...ttt ettt ettt 2282
E.3.1. Migration to Version 9.6.18........ccccccecririmineneneininenesreereeeeeennene 2282
E.3.2. CRANEES .uveeiieiiieieetee ettt 2282
E.d. ReEIEASE 9.6.17 ..ottt sttt et s st 2284
E.4.1. Migration to Version 9.6.17ccccoceviiriiiiiiniiieneneee e 2285
E.4.2. CRANGES ..cuveiieiieieieetetee ettt sttt 2285
E.5.ReIEaSE 9.6.10 ..ottt 2287
E.5.1. Migration to Version 9.6.16.........cccccevieriiieiiininiienineeeneeteeeeeeeeee 2287
E.5.2. CRANGES ..cvviiiiiieieiieeieeete ettt sttt 2287
E.0. Release 9.6.15cooiiiiiiiieccccee et 2291
E.6.1. Migration to Version 9.6.15......cccccoiviinininiiininiiniincenicnecteseseeeeeee 2292
E.0.2. CRANZES ..ovveereieeiiieieesieeit ettt ettt st te et eseteebeesaeesasesbaenseesnnen 2292
E.7.REIEASE 9.6.14 ..ottt ettt 2293
E.7.1. Migration to Version 9.6.14cccocieriiriiniiieniienieeieeieesee e 2294
E.7.2. CRANEES .ouveeeieeiiteieesteett ettt ettt st ettt sttt et e st s be e s e sane s 2294
E.8.Release 9.6.13cooiiiiii e 2295
E.8.1. Migration to Version 9.6.13......ccccceciiriiriiiniieieeesiteieeee st 2295
E.8.2. CRANZES ..uveeiieeiiieiierteete ettt sttt st ettt s saee s 2295
E.9. REIEaSE 9.6.12 ..ottt ettt e 2298
E.9.1. Migration to Version 9.6.12......c.cccocueiviiniiiniiiinieienieeitesee et 2298
E.9.2. ChanESscooviiieiirieeieeeecteceerte ettt 2298
E.10. RelEaSE 9.6.11 c..ciiniiiiiiiiiiiniietctecettet ettt ettt et 2302
E.10.1. Migration to Version 9.6.11........c..cocooiiiiiininiinincceceeeeceee 2302
E.10.2. Changesc..cccoevueiieiiiieieiieecene ettt e 2302
E.11. Release 9.6.10 c..ccueveuieiieiiiiiiieieieceieetenertetetei sttt ettt et 2306
E.11.1. Migration to Version 9.6.10........c..ccccoiiiiiiiiiiiniiiiceceeeeceeee 2306
E 112, CRANEZES ..ottt ettt ettt et eae e 2306
E.12.ReleaSE 9.0.9 ..ottt 2309
E.12.1. Migration to Version 9.6.9........ccccccevurvirininenienieinineneseeeeeeeeneiee 2309
E.12.2. Changesoocooouiiiiiiiiiiiciices e 2309
E.13.ReleaSE 9.0.8 ...ttt et 2313
E.13.1. Migration to Version 9.6.8........ccccccecuvimininenieriniiniineneseereeeeeesnene 2313
E.13.2. Chan@es ...ooueeueeiiiiieieieeiteeetcee ettt sttt 2313
E.14. RElEASE 9.6.7 ...ttt sttt s 2314
E.14.1. Migration to Version 9.6.7.........ccoceevueririrnieninienineenie et 2314
E.14.2. ChanEescoueeueeiiiiiiienieeiteteettete sttt sttt 2315
E.15. RElEaSE 9.6.0 ...t 2317
E.15.1. Migration to Version 9.6.6..........ccccecuererievieninienineenieneerenieneeeneeenes 2318
E.15.2. CHANZES ..veevveeiiieiieiieeie ettt ettt sttt et eseteebeesaaesaseenbaenseesnne s 2318

XXXV

E.16. REICASE 9.0.5 ...ttt e et e e e e e e treae e e 2320

E.16.1. Migration to Version 9.6.5........cccocveriiriiriiiinienienieeieesee st 2320
E.16.2. ChanEs ...ccc.ceeviiiieniieeieeieeiteste sttt sttt ettt ettt et st esaee s 2321
E.17.ReICASE 0.0.4 ...ttt ettt et s 2322
E.17.1. Migration to Version 9.6.4.........ccoceeviiriiniiiinienienieeieeseeeee e 2322
E.17.2. Changesccuoeeeiiniieieiieiieieeeeeesteeeete ettt 2322

E.I18. RIS 9.6.3 ..c..ueiiiiieiie ettt ettt st ettt 2327
E.18.1. Migration to Version 9.6.3..........ccccocueriiririininieniieeeneceeeeeeeeeeeeee 2327
E.18.2. Changesc.ooeeiiiiiiiiiieiietieeee sttt 2328

E.19. RElEASE 9.6.2 ..ottt sttt 2332
E.19.1. Migration to Version 9.6.2..........ccccoceviiiiiiiiiiiniiiccneceeeeeeeee 2332
E.19.2. Changescccooouiiiiiiiiiiieieces e e 2332

E.20. ReleaSE 9.0.1 ..ceeiiiiiiiieieieeee ettt ettt st 2337
E.20.1. Migration to Version 9.6.1........cccccevurinininenenieiiniincnestceereeeeeereenene 2337
E.20.2. Chanes ...ccc.eeeuieieeniienieeieeiteete ettt sttt ettt ettt e 2337

E.21. REICASE 9.0 ..ottt ettt sttt et st saen 2340
E.21. 1. OVEIVIEW .outiiienieiiieieiteei ettt st sttt 2340
E.21.2. Migration to Version 9.6........ccccccevevieinininenieieieineseseeeeneeeneenesnee 2340
E.21.3. ChAaNEES ..coviiienieiieeteieeeeeeee ettt st sttt 2341
EL21.3.0. SEIVET ettt ettt st 2342

E.21.3.1.1. Parallel QUETIEScceeeeveieeiieeciieeeiee e 2342

E.21.3.1.2. INEXES...c..eoueemieriieieniieienieetenie sttt st 2342

E.21.3.1.3. SOTtING ..eveivienieriieienieeieneeeee ettt 2342

E.21.3.1.4. LOCKING.c..covtiieriieienieeteneeeeicsiteesieetee et 2343

E.21.3.1.5. Optimizer StatiStiCScceevvrerreereerreerieeneeniesrieenieennnens 2343

E.21.3.1.6. VACUUM....cciiiriiiiiiicicicieeeteeeee st 2343

E.21.3.1.7. General Performance...........c.ccocceeeneeciininieencnecncnene 2344

E.21.3.1.8. MONItOTING....eevtieriieiieniienieeieeniee e eieenieesieeeveenaeesane s 2345

E.21.3.1.9. AuthentiCationcccceervuerereenieneecieneeeeneneeieniene 2346

E.21.3.1.10. Server Configurationceeceevveevieeneeneennieeneennnenn 2346

E.21.3.1.11. Reliabilityccccecvevieiininiiniiiicieniciecceec e 2347

E.21.3.2. Replication and RECOVETYccceerueriiiiiiiiniinieeseenieeieeieee 2348

E.21.3.3. QUETIES ..veieiiieeiiieeiieetiee et et etee e eeseveeeeveeeereesssaeesaraeenns 2348

E.21.3.4. Utility Commands...........cccceceevuirienenenirenienieienceeenieneenenieens 2349

E.21.3.5. Permissions Managementcccccoeeeeueneeceeneeneenneneennenneens 2350

E.21.3.6. Data TYPEScooviriieiiiieieiieeceeeceeeseeeeese e e 2350

E.21.3.7. FUNCHONSceiutieiieiiieeieeiteeteeeette ettt 2351

E.21.3.8. Server-Side Languagescccocceeeririeiiniininieicnenecienee 2352

E.21.3.9. Client INterfacesccceevueeriersieiiieiieneeieerteeeeee e 2353

E.21.3.10. Client AppliCAtionscocueevueerieirienieiieenieeieesiee st 2353
E.21.3.10. 1. PSAL e 2354

E.21.3.10.2. pEbenchcccooiiiiiiieiiieeeeee e 2355

E.21.3.11. Server AppliCations.cecveruerierieneeieieeiieie et sieeeeae s 2355

E.21.3.12. SoUrce Codecooueiuieieniiniieienieeie ettt 2356

E.21.3.13. Additional Modulesc..ccccereerenirieninieieneeeeneeieee 2358
E.21.3.13.1. pOStgres_fadW . iieeieeeciee ettt 2359

E.22. Prior REIEASES.cueiuiiiiiiiiiiiieieeeeteteete ettt sttt st 2359
F. Additional Supplied MOdUIESccerieririiieniieieieeitete ettt 2360
FoL. admMinpackK......coeeviiriiiiiniiiieieeeee ettt sttt et st 2361
F2. QUth_delay......cccovuiiiiiiiiiiiciee ettt st 2362
F.2.1. Configuration Parameters..........cc.ccvereerenienienienieneneenienieerenieseeee e 2362
F2.20 AULNOT ccniiiiiiie ettt 2362

XXXV

F.3. QUL0_@XPlaIN..ceeiiiiieiieiieiie ettt sttt st ettt et 2362
F.3.1. Configuration Parameters..........coceeveerierieniieeniienienieerieesee st 2363
FL3.20 EXAMPIE ..ttt sttt st ettt st s 2364
FL3.3. AULNOT oottt et e e e e be e e stb e e eeb e e easaeeenraaeenes 2364

LR o) 0o 1 1 TSRS 2365
Fid 1. ParameterS.......ceeeviieieiieeciieeeieeeieeeit e e e iee e st e e reeeereeeebeeeeseesasaeesnsaeennes 2365
Fi4.2. EXAMPIES....ooiiiiiiiiiiieiiicceeeeee et 2365
F.4.3. Operator Class Interface............cccccoeevieniiieiiininiiniiececceeeeeee 2367
F4. 4, LIMITAtIONS ...coovvvieeieiiiieeeeeeiieeeeeeeieeeeeeetveeeeeeetreeeeeeenraeeeeesnreeeeeeeassaeeeens 2368
Fid.5. AULROTS.....oiiiiiiieee e e e e et e e e eeraeee e 2368

FLS. DO _IM .ottt sttt 2368
F.5.1. EXAMPIE USAZE ...veveeiieiieiieiieieee sttt 2368
F.5.2. AULROTS....oviiiiieeee e ettt et e e e earaaee e 2369

FLB. DIIEE_IST .ottt ettt sttt st e b et ae et esae et e tesaens 2369
F.6.1. EXample USAZEccucoveuieiriiniriiicieieietetesesteteeeeee et 2369
FL0.2. AULNOTSooiiiiiieeeiie ettt e e et e e eeaeeeeaeaeeans 2370

L7 CRKPASS.c ittt sttt et st 2370
F7. 1 AULNOT oottt et e et e e eaeeeeaes 2371

FLB. CIEEXE oottt ettt e e et e et e e et e e eeaae e eteeeeteeeeteeeearaeeas 2371
F.8.1. RAtIONALEccvviiiiiiiiiiiecee ettt ettt et e e e eeeaes 2371
F.8.2. HOW 10 USE It ..eiiuviiiiiiiciiee et ettt e 2371
F.8.3. String Comparison Behavior...........coceverieiiininiiininininenicncneeenee 2372
F.8.4. LIMItAtIONS ...vviiieuiiieiiiieeeiiie et ettt ettt et e et e e e veseareeesaseeeeaseeeaseeeenseeennns 2372
FLB.5. AULNOT ..ottt et e e et e e eab e etae e e raeeeans 2373

FLO. CUDEC......eeiiee ettt et et et e e et e e e tr e e e aae e earaeaas 2373
FLO. 1. SYNTAX ittt ettt ettt ettt st et esaee s 2373
FLO.2. PreCiSION.....ccciiiiciiiiiiiieeeiiee ettt ettt e sv e e e ve e eebeeetbeeeebeeeabaeeesveeenns 2374
FLO. 3. USAZE.ccuiiintieiieeie ettt sttt st ettt s b e saee s 2374
FLO.4. DefaultScccouiiieiiiiiiiieeiee ettt ettt eeeb e s tae e evae e 2378
FLO.5. INOES ..viieiieeeiie ettt ettt e et e et e e s bt e e tbeeeabeeestbeaensseeensaeesssaeannes 2379
FLO.6. CIedits .ooeiuiieeiiieeiie ettt ettt et tee e vt e e be e eebeeetbeaesbeesasaeesssaeenes 2379

LR LG 1) 11RO 2379
ADINK_COMMECTccciiiieiiiieciiieeeiteetee ettt ee et e e eeereeesebeeeebeesasaeesnsaeenes 2380
ADINK_CONMMNECT_U.uuiiiiiiiieiiieeiieeiee ettt iee e sree e e e e e ebeeeebeesasaeesssaeenes 2383
ADINK_AISCONMMECT ...eoviiiiiiiiiiieeeteeeeeeeee et e e e e e e e e e e e sesseanasaaeeeeees 2384
ADINK ..ot e e e et e e e e e eaae e 2385
16 10) 5001 Q) (= ORI 2388
ADIINK_OPCIN. ..ttt st ettt et 2390
ADINK_FELCI ..o e 2392
16 10) 1101 &) (o]ORN 2394
dbliNK_ZEt_CONNECHIONSeeuieiiiieiietieie sttt ettt 2396
ADlINK_@ITOT_MESSAZEveveeueetiiieiietieie sttt ettt sttt 2397
AblINK_SENA_QUETY ...evieniiiieiieiieieee et 2398
ADINK_IS_DUSY ..ttt e et 2399
ABINK_GEt MO ..ot 2400
ABINK_GEt_T@SUIL ...ttt 2401
dblink_CanCEl_qUETY ...coouiruiiiiiieiieiieicee ettt 2404
ABINK_ GOt PKEY c..eeniieiieieiieetet et et 2405
dblink_build_SqI_INSeIT......ccoueiiirieiiriiiiinirieerteeeetee et 2407
dblink_build_sql_delete.........ccceeieviiriiiininiiieiieieieeeeee e 2409
dblink_build_sql_update........ccccecueviiririiininiinienieieieete e 2411

Fol 1 AICEINT . oiiiiiiiiii ettt et ettt e et e e et e e e tb e e etaeeetaeeeatseeeasaeesareeans 2413

XXXVii

FoIT.1. CONfIUIATION «..eivitiiiieiiiiieeiteste ettt ettt ettt st e e e saee s 2413

Fo L2 USAZE. ittt ettt ettt st ettt st s be e beesaee s 2413
Fol2. IOt X SYMtiiiiiiiiiiieieete ettt sttt sttt et st et e b st ebeebee e 2413
Fo12.1. CONfAGUIATION «..eiitiiiieiieiieeiteete ettt ettt ettt s 2413
Fll12.2. USAZE...eiiiiiiieeit ettt ettt st ettt st saee s 2414
F 13, €arthdiStancecocooiiieiinieiiieieececteeeeetc ettt st 2415
F.13.1. Cube-based Earth DiStancescccceevveeriirnieeneeniieenieeneenieeeeeseeeneeen 2415
F.13.2. Point-based Earth DiStancescccceeeveiriiirneenieniieniieneenieeeeseeneeenn 2416
| 7 1 [¢ 2 SRS 2417
F.15. fuzzystrmatCh.........cocooiiiiiiiiiece e 2419
FoIS5. 1. SOUNAEX.....ciiiiiiiiiieie ettt 2419
F15.2. LeVenShteIn ...cc.cooviiiiiiiiiieeteeteecet ettt 2420
Fo15.3. MEtaphone.c...oovviiiiiiiiiiieteeeeeetet ettt 2420
F.15.4. Double Metaphone...........ccovieriiriiinieniiiiieeeecseeieeseeeee e 2421
FLLO. RSEOTE ..ttt ettt st b et st et esae s st eaesbens 2421
F.16.1. hstore External Representationc.cceceveeienineenenenienienceeeeee 2421
F.16.2. hstore Operators and FUNCHONSc..cooeeieriirieninieieieeiesieeeeeeee 2422
FoI10.3. TNACXKES ..ottt sttt st 2426
Fo160.4. EXAMPIES ...cuiiiiiiiiiiiieiieiteieecete sttt sttt 2426
FLI16.5. StAtISTICS c.eveutiiieierieeteteeiteteet ettt st sttt 2427
F.16.6. ComPAatiDILity ...c.eoveeiiniiriieiiniieienienteeseeeeetee et 2427
Fo16.7. TransfOrmS «.....coouerieeiinieniieienicetesieet sttt 2428
FoI16.8. AUNOTIS....c..eiiiiiiiiiiicieieeeee ettt 2428
FoIT ANTAZE oottt ettt ettt ettt st ea 2428
FoI7.1. FUNCHOMNS ...cnivtiiinieeiieieeitetcet ettt ettt 2429
Fo17.2. SamMPIE USES.....eiiviiniieeiiieiieniiesie ettt sttt ettt e seteebeesieesatesbeenaeesaee s 2429
FoI8. AMATTAY ..veevvieniieeiieeeete ettt sttt et st et e bt e st e enbeebeesabesnseebeens 2430
F.18.1. intarray Functions and Operatorsccceereerieenieeneeneeesieeneennenn 2430
Fo18.2. INAEX SUPPOTL...ciiiiiiiieiiiiiieiiesie ettt ettt sttt st e e s 2432
F18.3. EXAMPIE ..ottt sttt e 2432
F18.4. Benchmarkc.ccocceoieiiiriiiiiniiiinieieicrecreetetc et 2432
FoI8.5. AUNOTIS......oiiiiiiiiiiieieeec ettt 2432
FlLOU IS8Tttt st 2433
Fo19.1. Data TYPES....coeeiiriieieieeieeiieeeeesteetee sttt st 2433
| L G T £ PR 2434
F.19.3. Functions and OPEratorsc.ccoceeceeruereeieniinienieneeeeneereieseeeesneenee 2434
F19.4. EXAMPIESoooiiiiiiiiiiiieieieeeeseeeee et 2435
F.19.5. Bibliography........c.ccccoiiiiiiiiiiiiieiicecece e 2436
FiT19.6. AUNOT ...ttt 2436
20, 10 ottt et e h et e ettt e it ereens 2436
F.20.1. RAtIONALE ...t sttt 2436
F.20.2. HOW t0 USE It ...eiiiiiiiiiiiiieeieeetceetet et 2437
F.20.3. LIMItAtIONS «..eueenieitieiieieeiieieetcete sttt sttt s 2437
F20.4. AUNOT ...ttt 2437
FL2T TEEEE ettt ettt et b et bt et nae st e b b 2438
F21.1. DefiNitiONSeeeeniiiieiieiteetieieeteete sttt sttt 2438
F.21.2. Operators and FUNCHIONSccceririeniiiiiiniiiienie e 2439
F21.3. TACXES ..ttt st 2441
F21.4. EXAMPIE ..ottt ettt 2442
F.21.5. TransfOrmscooereeieniirieiinceteneeteest ettt 2444
F21.6. AUTNOTS....c..ooiiiiiiiiieiciet ettt 2444
FL22. PAGEINSPECT ..ttt ettt sttt ettt et et s sieeas 2444

XXXVIil

F.22.1. FUNCHIONScootvviieeeeiieee ettt eetre e e et e e e e e e eeareeeeeeenaneeeeens 2444

F.23. passWOTACRECKc..eivuiiiiiiiieiieie ettt st 2448
F.24. pg_ DUffercache.........coovoviiiiiiiiiiiiee ettt 2449
F.24.1. The pg_buffercache VIEW.....cocceeeiiveiieeeeiieeeeeeereeeeeeeeveeeeeeevveee e 2449
F.24.2. Sample OULPULoovuiiiiiiiieiieeieeeetet ettt ettt 2450
F.24.3. AUTNOTS......ooiiiiiiiiieieecec et 2450

FL25. PECIYPLO ettt sttt et s 2451
F.25.1. General Hashing Functions.........c..cccccceeieiininiininencnccieeeeeeceee 2451
F25.1.1. AigeSt () ceeeeeereeeeniesieetesteeeete et e ee sttt ettt sae e aesnens 2451

F.25.1.2. MAC () teveeteeienie ettt ettt sttt et sae e enens 2451

F.25.2. Password Hashing FUnctionsccccoceceiiiiininiencniiiccneceeee 2451
Fo25.2. 1. CrYPE () ettt e 2452

F25.2.2. gen_5811 () tooroeeeeeeeee et 2452

F.25.3. PGP Encryption FUNCHONS.......ccoviriiiiiieieieiee e 2453
F25.3.1. pgp_symM_enCryPLt () eeeeecrieeeeeecieee et e et e e e e 2454

F.25.3.2. pgp_sym_deCIYPEL () wieeeecreeeeeeeieeee et e et 2454

F.25.3.3. pgp_pub_encCryPLt () weeeccveeeeeeeieeeeeeiee e et eevee e e e 2455

F.25.3.4. pgp_pub_deCTYPE () cvreeeeeeeeieeeeieeeeieeeeteeeeeeeeeireeeeaeeeeveeeeans 2455

F.25.3.5. DgP_KeY_ 1A () tieieiieeiieeeiee ettt et et 2455

F.25.3.6. armor (), AEATMOTL () teveeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeseeiaeseseeeeeeeesesas 2455

F.25.3.7. pgp_armor_headers e eeieeeeiee et eeiree e e eeaeeeeree s 2456

F.25.3.8. Options for PGP Functions...........cccccoceeierenienieneenicncneeneneens 2456

F.25.3.8.1. CIpher-al@oc..ccoceeeeiimeniininieienieiceceeee e 2456

F.25.3.8.2. cOMPIess-al@Occ.eveeiimereinenieieniieieneeeeneseeieniens 2456

F.25.3.8.3. compress-1eVelcccooceeviirniienieniieiienieeie e 2456

F.25.3.8.4. convert-Crlf......c.ccooeoiiiiininiininiienicccceec e 2457

F.25.3.8.5. disable-mdC.........ccceeeriimerieininieienieicnceeenc e 2457

F.25.3.8.6. SESS-KEY .uveeuiiiiiiiiieieeteceeeetee et 2457

F.25.3.8.7. S2K-MOdE......ccoereeiiniiiiinieienenieieneecc e 2457

F.25.3.8.8. S2K-COUNL.....eoruiruieiiniiriiniieeeniertceseereeec e 2457

F.25.3.8.9. 82K-digest-al@O.......eevueerieriiniieiienieeieeieesee e 2458

F.25.3.8.10. s2Kk-cipher-algocccceviirvieenieniiiiieieniceeeieeen 2458

F.25.3.8.11. unicode-mode..........cccccoeruererienienieiinieieneneeieneene 2458

F.25.3.9. Generating PGP Keys with GnuPG............c.cccccoviiiinininninnnn. 2458

F.25.3.10. Limitations of PGP Codecccceovuerviiiiiniiniiiiinieeieeeee 2459

F.25.4. Raw Encryption FUnctions..........c..ccccceeiieiiininieniniencnecrceeeeeeeee 2459
F.25.5. Random-Data FUNCHONSccocuiriiiiiiniiniiiiteeenieeeete e 2460
FL25.0. INOLES ..ottt ettt sttt ettt et ee et e ntenbe st e e e saeenes 2460
F.25.6.1. CoNfigUIation......cc.ceevuerieieieireniinicrereeeeeiese st enenes 2460

F.25.6.2. NULL Handlingcceceiieienenieeseeeeeicee e 2461

F.25.6.3. Security Limitationscceceerereereneeieieeieiesee e see e 2461

F.25.6.4. Useful Reading..........cccocveiieieniinieieneeieeeceeeeee e 2461

F.25.6.5. Technical References..........ccccooceveevenerieninieinceeceeeee 2462

F25.7. AUNOT ...ttt 2462

F.26. pg_freesSpacemapcceeueeiiriieiiniieierieeiteie ettt sttt et st 2462
F.26.1. FUNCLONS ...ttt sttt 2463
F.26.2. Sample OULPULc.eeiiriiiiiiiiieeteseeteee ettt 2463
F.20.3. AUNOT ..ot et 2464

FL27. PE_PIEWAITI ...ttt sttt ettt sbeeas 2464
F27.1. FUNCHOMNS ...cneiieniiiiteiteieeiteteecete ettt sttt 2464
F27.2.0 AUTNOT ..ottt 2464

FL28. PEIOWIOCKS....c..eeuiiiiiiiiiieiteteeeee ettt ettt et s 2464

XXXIX

F.28.1. OVEIVIEW ..ottt e et e e et e e e esaraeeeeeeaaeeeeens 2465

F.28.2. Sample OULPULeeveieiiiiiieiienieeieetest ettt ettt s 2465
F.28.3. AUNOT «..cviiiiiiieccee ettt 2466

F.29. pg_stat SAEMENTS...cccueiriiiieerieeriie ettt et ettt st et ebeesiteebeebeesatesaseebee e 2466
F.29.1. The pg_stat_statements VIEWccooceeeeeeiveereeeiireeeeeecieeeeeeeiveee e 2466
FL20.2. FUNCHONS ..ttt ettt ettt ettt s n 2469
F.29.3. Configuration Parameters............cocceceverieiieniiniieninienienecreieneeeeeeeee 2469
F29.4. Sample OULPULcocviiiiiieiiieieneeeeeceetee e 2470
FL20.5. AUTNOTSeiiieiiieitetee ettt st e 2471

F.30. PESTALTUPLE.......oeoiiiiiiiieiieiceeee ettt s 2471
F.30. 1. FUNCHONS ..ottt ettt ettt e 2471
FL30.2. AUTNOTS ..ottt st 2474

FL 3L Pl .ttt sttt et sttt 2475
F.31.1. Trigram (or Trigraph) CONCePLSccceveruieieriieienieeenie et 2475
F.31.2. Functions and OPEratorscceeeeeruerienienieeienieseeenee e eeesieseeeeeseeenes 2475
F.31.3. GUC Parametersccccueevieereenieniienieeneenteenieesiee sttt esiee st esvee e s 2477
F.31.4. INAEX SUPPOTIL...ciiuiiiiiiiiiiiieitesieetet ettt 2477
F.31.5. Text Search INt@Zrationccceceverienerieiienieiene et 2478
F.31.6. REfEIONCEScueeniiiieiieiieiteecee et 2479
F31.7. AUNOTS ..ottt et 2479

Fo32. PG VISIDIIIEY .ottt ettt st 2479
F32.1. FUNCHOMNS ...ttt sttt 2480
F32.20 AUTNOT ..ottt 2481

F.33. POSEEIES_fAW...eouiiiiiiiiiiiiceeee ettt s 2481
F.33.1. FDW Options of postgres_fdwcccceeviirviiinienieniieierieeieeieeneenie 2482
F.33.1.1. Connection OPLioNSccuveeveerueerieerieesieenieesieesieesieesressaeesieenns 2482

F.33.1.2. Object Name OPtiONScccveevueerieerieeiieniiesieesieesieesresieenieenns 2482

F.33.1.3. Cost Estimation OPtions..........cceceerieerueenieerieesieeseeneessieenieenns 2482

F.33.1.4. Remote Execution Options.........ccceevvueevueenieeniensieeneenieesieenieenns 2483

F.33.1.5. Updatability OPtionscecueevueerierrieeiiiiniienieesieeseeseeeieenieenns 2483

F.33.1.6. IMpPOrting OPtionsc.c.cevveerierrieenieerienieesieesieerieesieesieeeieenieenns 2484

F.33.2. Connection Managementcecueerueereeriienieeneenieenieeneeseeesveenseesieens 2484
F.33.3. Transaction Managementcocueerueerierieenieneenieenieeneeseeesieesieesaeens 2485
F.33.4. Remote Query OptimiZationcccceeuereevieniieeeniineeneneerenieneenenneenes 2485
F.33.5. Remote Query Execution Environmentcccccoceveniniieninencnennenne. 2485
F.33.6. Cross-Version Compatibility..........cccccoeriieiieninieninienenecieeeeeeeeee 2486
F33.7. EXAMPIES ...ttt 2486
F33.8. AUNOT ...t 2487

BB S ettt sttt 2487
F.34.1. RAtIONALE ..ot sttt 2487
FL34.2. SYNEAX weeiitiiiieeiteteetee ettt sttt e 2488
F.34.3. PreCISION ..ottt e sttt 2489
F34.4, USAZE.....iiiiiiiiieie e 2489
FL34.5. NOLES -ttt ettt ettt ettt st sttt e be e e b eae 2490
F.34.0. Creits ..couveiiiieieiieeieteee ettt sttt 2490

L35, SEPZSAL ettt ettt ettt 2490
F35.1. OVEIVIEW ..oniiieniiiieeteieeiee ettt sttt 2491
F.35.2. InStallation.......cooueiieieniiniieieeiceteneeetee ettt 2491
F.35.3. Regression TeStS.....ccoueririeriiriiienieniteniesiteteteete ettt 2492
F.35.4. GUC Parametersccccevevuerieeienenienieniteienieeitenie e sie st sie s 2493
F35.5. FEALUIES ..ottt 2493
F.35.5.1. Controlled Object Classescccecverueerueenieeriensieeneesieesieenieenns 2493

xl

F.36.

F.37.

F.38.

F.39.
F.40.
F41.

F42.

F43.

F44.

F45.

F.46.

F.35.5.2. DML PermiSSIONS.........cccooiuvviieeiiireeeeeeiireeeeeenitreeeeenereeeeeeninnennes 2494

F.35.5.3. DDL PEermiSSionsccccocceveeeuereenienernienienieereneeeenseneenneneens 2494

F.35.5.4. Trusted Procedurescoccecuemeeneneriienenieenieneeeencneeneneene 2495

F.35.5.5. Dynamic Domain TranSitions.........c.cceeeeeveeriensierseeniennienneenns 2496

F.35.5.6. MISCEIIan@OoUScocvemieuieiiniieiiniieieneerereseere e 2497
F.35.6. Sepgsql FUNCLIONSc..cocveiiniiiiniiiiciecicceee et 2497
F.35.7. LIMILALONS «..eeniiieiiieiieeiieeieeiteeite ettt et s e s s 2497
F.35.8. EXternal RESOUICES.c...coovieriiiriiniiiitenitceieeteteee ettt 2498
F.35.9. AUNOT ...ttt 2498
Sttt et et n e sae e 2498
F.36.1. refint — Functions for Implementing Referential Integrity 2498
F.36.2. timetravel — Functions for Implementing Time Travel 2499
F.36.3. autoinc — Functions for Autoincrementing Fieldsccceceeenenne. 2500
F.36.4. insert_username — Functions for Tracking Who Changed a Table 2500
F.36.5. moddatetime — Functions for Tracking Last Modification Time.......... 2500
SSIINTO. .ttt et eaean 2501
F.37.1. Functions Providedcccoooieiininieniiieieieeeeeee e 2501
F37.2. AUTNOT ..ottt 2502
EADIETUINC ..t 2502
F.38.1. Functions Providedccccoceeviniiiininiiieinecee e 2503

Fo38.1.1. NOTIMAL TANG ttttttteeeeee e e eeeeeaeeeaeaeas 2503

Fo38. 1.2, CrOS ST AL (EOKE) tueeeeeeeeeee et e e e et eeeeaaeaeaaaees 2504

FL38.1.3. CrOSSTADN (EEXE) aeeeeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e ee et eeeeaeeeeaaaees 2506

F.38.1.4. crosstab (LeXt, TXE) trrrrrrieriiieieeeeeeeeeeeeieiieinireeeeeeeeeeeeens 2507

F.38.1.5. CONNECEDY ittt ettt et 2510
F38.2. AUNOT ..ottt 2512
EOIL ettt ettt ettt ettt a ettt h et b e bt ae s he et b e st eb e euee b e be e besbeeas 2512
EESE_AECOMIMEZ c.vveeniieiiiieieeiie ettt ettt et ettt st st e st e sate e beesaaesaee s 2513
ESCATCRZ ..ttt st 2513
F41.1. POrtability ISSUEScc.eeviiriieiienieeieeiteste sttt ettt 2514
F.41.2. Converting a pre-8.3 Installation..........cccceecveevienieniiieneenienieeceneenen 2514
Fi41.3. REfEINCEScueenieriiiiiiieiieeeccceeecte et 2515
ESTII_SYSTEIM_TOWS.cuutiiutietieniteeieeiteenteesiteeateebeesatesutesabeesseesseesateesseenseesssesseenseenns 2515
FA2. 1. EXAMPIES ...ttt 2515
ESTN_SYSEEIM_LIITIE .euteeutieiiieiie et ettt sttt et sat e st e st e st e st ebe e bt e sbneeseenbee e 2516
FA3.1. EXAMPIES ..ottt 2516
UNACCEIIE ¢ttt eitteeeuiteeeiteesteeeeteeeeteeestseeesabeeseateeemeeesbeeesamteesanaeesabeeeenseeenareeenaneesas 2516
F44.1. ConfigUurationccccoeeieiiinieiiininieieeeeiee e 2516
Fid4. 2. USAZE.....iiiiiiieieeeee e e 2517
Fi44.3. FUNCHONS ..ottt ettt et sttt e 2518
TUEA= 0SSP ettt et ettt et et et e e e te et e be e st et e et e eate e et eneesbeestenteebeensesseeneenseeneensenseans 2518
F45.1. uuid—0ssp FUNCHONSocoviiiiiiiiciie e 2518
F45.2. Building Utid—0SSD weceeeeruirieienieeienieeiteieste ettt 2520
Fid5.3. AUNOT ..o e 2520
.41 11 1O OSSO OO U U SRR PR 2520
F.46.1. Deprecation NOLICEccveuirieieriinienieniteteteete et 2520
F.46.2. Description of FUNCLONSc..coceririeniiiiieniiniec e 2520
Fid6.3. XPath Al @ ittt ettt et et e et e e eta e e eaeeeeaes 2522

F.46.3.1. Multivalued Results.........cccceveeviireenininieiinieicneeieieneeieseee 2523
F.46.4. XSLT FUNCHONSeevviiiiiieiiniieienieeteesiteeieeitee et 2524

FiAG.4. 1. XS 1t 0T OCESS wuiiiiiiieeieeeeeteeeee et eeeee e et e e e e e eeareee s 2524
FiA6.5. AUNOT ..o 2524

xli

G. Additional Supplied Programsceecueeviierieriieiiienieniesie ettt ettt st siee e s

G.1. Client APPLCALIONS ...c.eeeviirieeiieiienie ettt ettt st sttt e st e sate et e saeesanesnees

OIA2NAMIE ..ottt ettt st s b e sae e

VACUUIMIO ...ttt ettt ettt st s e ne st e sae e

G.2. Server APPIICALIONSeevuiiriiiiieiienite ettt ettt st sttt e sttt e st e sanesanes

PE_SLANADY ..o

H. EXternal PrOJECES ...ceouviiiiiiieiieeieei ettt ettt sttt st s n

H.1. Client INtEIfaCes.cueevuiiriiiiieeieiite ettt sttt

H.2. AdminiStration TOOLScoceerieriiriieirieie ettt

H.3. Procedural Languages...........cccccceriiiieniiieiinieiese et

HA. EXEENSIONSeetiiiiieieiiterite ettt ettt ettt ettt sttt et sat e eabesbeesbeeenseenee e

I. The Source Code REPOSILOTYcc.eeeruiiriiiriiriieniiieieeieestteete sttt sttt st saee s

L1. Getting The SOUIce Via Gilceceeieiieieeieieeiieieeteete ettt st

J. DOCUMENEALION ...ttt ettt st e et e e sae et e s bt e st e beebeentesaeeneesbesneensessens

Jo 1. DOCBOOK ..ottt et

JL2. TOOL SELS...eoueeeieeeteee ettt ettt sttt st et b e s e e ne e

J.2.1. Installation on Fedora, RHEL, and Derivatives............cccceevevmeeeeeeeivennnes

J.2.2. Installation on FreeBSDccccoiiiiiiiiiiiiiiiieieeeecee e

J.2.3. Debian Packages........ccccoverieririiiiiniieienc e

JL2040 OF X ettt

J.2.5. Manual Installation from SOUICE........c.coereereririieninieienceeneeeeenee

J.2.5.1. Installing OpenJadecocceeeviereeninenienenieieneeeeneeeeieseene

J.2.5.2. Installing the DocBook DTD Kit.......ccocceeuerienieniencnniencnienieneee

J.2.5.3. Installing the DocBook DSSSL Style Sheetscccccocereeruennnne

J.2.5.4. Installing JadeTeXccccecuerieeriienienieeieeee e

J.2.6. Detection DY CONTigUTE civviiriirciieniienieeieeiteste ettt et st saae e

J.3. Building The DOCUMENTAtION.......cccuirriieriieriieiieerieeniiesteeieeiee e ebeenieeseeeaeenseenes

J3 1 HTML ettt s

J.3.2. IMIANPAZES. ¢ nveeereenieeiteeite ettt ettt ettt sttt e st st e b et st ea et e s abeeanes

J.3.3. Print Output via JAdeTeXcocvviiiniiriinieeiienieeeeeeee et

J.3.4. OVErIOW TEXL..cueeuiiiieiieiieieieniectetteeet ettt

J.3.5. Print Output via RTFoooiiiiiiiiiee e

J.3.6. Plain Text FIlesc..ooieiiniiiiierieiiieec et

J.3.7. SyNtax CheCK....oouiiiieiiiiiieiieeteee ettt

J.4. Documentation AUthOTINGccooieiiiririeiiinieieceeee et

JAA 1. EMACS/PSGML.....coiiiiiiiiiiieteeeetteee ettt

J.4.2. Other EMAacs MOAEScocueevuiiriiiiiiiiinienieeiteteee ettt

J.5. Style GUIAE. ...

J.5.1. Reference Pagescooveiiiiiiiiiiiiieiieteeteeee et

KL ACTOMYIMS ettt ettt st ettt st e b e sbeesat e e beesaeenaee s
Bibliography

Index

xlii

Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL devel-
opers and other volunteers in parallel to the development of the PostgreSQL software. It describes all
the functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been orga-
nized in several parts. Each part is targeted at a different class of users, or at users in different stages
of their PostgreSQL experience:

« Part I is an informal introduction for new users.

« Part II documents the SQL query language environment, including data types and functions, as well
as user-level performance tuning. Every PostgreSQL user should read this.

« Part III describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, be it for private use or for others, should read this part.

« Part IV describes the programming interfaces for PostgreSQL client programs.

+ Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

« Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

« Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2', developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database sys-
tems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of
the SQL standard and offers many modern features:

« complex queries

- foreign keys

. triggers

« updatable views

« transactional integrity

« multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

« data types

« functions

+ operators

« aggregate functions
« index methods

1. https://dsf.berkeley.edu/postgres.html

xliii

Preface

« procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free
of charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades of
development behind it, PostgreSQL is now the most advanced open-source database available any-
where.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial con-
cepts for the system were presented in The design of POSTGRES , and the definition of the initial
data model appeared in The POSTGRES data model . The design of the rule system at that time was
described in The design of the POSTGRES rules system. The rationale and architecture of the storage
manager were detailed in The design of the POSTGRES storage system .

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
The implementation of POSTGRES , was released to a few external users in June 1989. In response to
a critique of the first rule system (A commentary on the POSTGRES rules system), the rule system
was redesigned (On Rules, Procedures, Caching and Views in Database Systems), and Version 2
was released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support
for multiple storage managers, an improved query executor, and a rewritten rule system. For the most
part, subsequent releases until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, Illustra Infor-
mation Technologies (later merged into Informix?, which is now owned by IBM?) picked up the code
and commercialized it. In late 1992, POSTGRES became the primary data manager for the Sequoia
2000 scientific computing project®.

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2. http://www.informix.com/

3.

http://www.ibm.com/

4. http://meteora.ucsd.edu/s2k/s2k_home.html

xliv

Preface

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a
new name, Postgres95 was subsequently released to the web to find its own way in the world as an
open-source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

+ The query language PostQUEL was replaced with SQL (implemented in the server). (Interface
library libpq was named after PostQUEL.) Subqueries were not supported until PostgreSQL (see
below), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate func-
tions were re-implemented. Support for the GROUP BY query clause was also added.

+ A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

« A new front-end library, 1ibpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, pro-
vided new Tcl commands to interface Tcl programs with the Postgres95 server.

« The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

+ The instance-level rule system was removed. Rules were still available as rewrite rules.

« A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

+ GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled
with an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because
of tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capa-
bilities, although work continues in all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

The following conventions are used in the synopsis of a command: brackets ([and 1) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.)

xly

Preface

Braces ({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (. . .) mean
that the preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands
are preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL:

Wiki
The PostgreSQL wiki’ contains the project’s FAQ® (Frequently Asked Questions) list, TODO’
list, and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.

Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before

PN

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently _Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

xlvi

Preface

some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

« A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

« A program produces the wrong output for any given input.
« A program refuses to accept valid input (as defined in the documentation).

« A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

» PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known.
If you cannot decode the information on the TODO list, report your problem. The least we can do is
make the TODO list clearer.

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

« The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and INSERT statements, if the output should depend on the data in the tables.
We do not have the time to reverse-engineer your database schema, and if we are supposed to make
up our own data we would probably miss the problem.

xlvii

Preface

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/.psqglrc start-up file.)
An easy way to create this file is to use pg_dump to dump out the table declarations and data
needed to set the scene, then add the problem query. You are encouraged to minimize the size of
your example, but this is not absolutely necessary. If the bug is reproducible, we will find it either
way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files”
or “midsize databases”, etc. since this information is too inexact to be of use.

+ The output you got. Please do not say that it “didn’t work™ or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the mes-
sage. In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message
from the server log, set the run-time parameter log_error_verbosity to verbose so that all de-
tails are logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server’s log output, this would be a good time to start doing so.

« The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

» Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

+ Anything you did at all differently from the installation instructions.

+ The PostgreSQL version. You can run the command SELECT version (); to find out the version
of the server you are connected to. Most executable programs also support a -—version option; at
least postgres —--versionandpsgl --version should work. If the function or the options do
not exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged
version, such as RPMs, say so, including any subversion the package might have. If you are talking
about a Git snapshot, mention that, including the commit hash.

If your version is older than 9.6.20 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered

xIviii

Preface

in an older release of PostgreSQL has already been fixed. We can only provide limited support
for sites using older releases of PostgreSQL; if you require more than we can provide, consider
acquiring a commercial support contract.

 Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knows what exactly “Debian” contains or that everyone runs on x86_64. If you
have installation problems then information about the toolchain on your machine (compiler, make,
and so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an
article’ that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have time to find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is
called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the back-
end process, mention that, do not just say ‘“PostgreSQL crashes”. A crash of a single backend process
is quite different from crash of the parent “postgres” process; please don’t say “the server crashed”
when you mean a single backend process went down, nor vice versa. Also, client programs such as the
interactive frontend “psql” are completely separate from the backend. Please try to be specific about
whether the problem is on the client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at
<pgsgl-bugs@lists.postgresgl.org>. You are requested to use a
descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project’s web site'®. Entering a
bug report this way causes it to be mailed to the <pgsgl-bugs@lists.postgresgl.org> mailing
list.

If your bug report has security implications and you’d prefer that it not become immediately vis-
ible in public archives, don’t send it to pgsgl-bugs. Security issues can be reported privately to
<security@postgresqgl.org>.

Do not send bug reports to any of the wuser mailing lists, such as
<pgsqgl-sgl@lists.postgresqgl.org> oOr <pgsgl-general@lists.postgresqgl.org>.
These mailing lists are for answering user questions, and their subscribers normally do not wish to
receive bug reports. More importantly, they are unlikely to fix them.

Also, please do not send reports to the developers’ mailing list
<pgsgl-hackers@lists.postgresqgl.org> This list is for discussing the development of
PostgreSQL, and it would be nice if we could keep the bug reports separate. We might choose to take
up a discussion about your bug report on pgsgl-hackers, if the problem needs more review.

9. http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
10. https://www.postgresql.org/

xlix

Preface

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@lists.postgresgl.org>. Please be specific about what part of the documen-
tation you are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsgl-hackers@lists.postgresql.org>, so we (and you) can work on porting PostgreSQL
to your platform.

Note: Due to the unfortunate amount of spam going around, all of the above lists will be moder-
ated unless you are subscribed. That means there will be some delay before the email is deliv-
ered. If you wish to subscribe to the lists, please visit https://lists.postgresql.org/ for instructions.

l. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple in-
troduction to PostgreSQL, relational database concepts, and the SQL language to those who are new
to any one of these aspects. We only assume some general knowledge about how to use computers.
No particular Unix or programming experience is required. This part is mainly intended to give you
some hands-on experience with important aspects of the PostgreSQL system. It makes no attempt to
be a complete or thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a
more formal knowledge of the SQL language, or Part IV for information about developing applica-
tions for PostgreSQL. Those who set up and manage their own server should also read Part III.

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution
or because the system administrator already installed it. If that is the case, you should obtain infor-
mation from the operating system documentation or your system administrator about how to access
PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your ex-
perimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 16 for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

+ A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program
is called postgres.

« The user’s client (frontend) application that wants to perform database operations. Client applica-
tions can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a
web server that accesses the database to display web pages, or a specialized database maintenance
tool. Some client applications are supplied with the PostgreSQL distribution; most are developed
by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. You should keep this in mind, because
the files that can be accessed on a client machine might not be accessible (or might only be accessible
using a different file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this
it starts (“forks™) a new process for each connection. From that point on, the client and the new

Chapter 1. Getting Started

server process communicate without intervention by the original postgres process. Thus, the master
server process is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of this is of course invisible to the user. We only mention it here for
completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit
this step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

$ createdb mydb
If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:

createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell’s search
path was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such f
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:
createdb: could not connect to database postgres: FATAL: role "Jjoe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, see Chapter 21 for help creating accounts. You will need to
become the operating system user under which PostgreSQL was installed (usually postgres) to
create the first user account. It could also be that you were assigned a PostgreSQL user name that is
different from your operating system user name; in that case you need to use the —U switch or set the
PGUSER environment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

Chapter 1. Getting Started

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of this tutorial under the user account that you started the server as. '

You can also create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to 63
bytes in length. A convenient choice is to create a database with the same name as your current user
name. Many tools assume that database name as the default, so it can save you some typing. To create
that database, simply type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

» Running the PostgreSQL interactive terminal program, called psqgl, which allows you to interac-
tively enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC
support to create and manipulate a database. These possibilities are not covered in this tutorial.

« Writing a custom application, using one of the several available language bindings. These possibil-
ities are discussed further in Part IV.

You probably want to start up psql to try the examples in this tutorial. It can be activated for the mydb
database by typing the command:

$ psql mydb

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When
you connect to a database, you can choose what PostgreSQL user name to connect as; if you don’t, it will default to the same
name as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the
same name as the operating system user that started the server, and it also happens that that user always has permission to
create databases. Instead of logging in as that user you can also specify the —U option everywhere to select a PostgreSQL user
name to connect as.

Chapter 1. Getting Started

psgl (9.6.20)
Type "help" for help.

mydb=>
The last line could also be:
mydb=+#

That would mean you are a database superuser, which is most likely the case if you installed the
PostgreSQL instance yourself. Being a superuser means that you are not subject to access controls.
For the purposes of this tutorial that is not important.

If you encounter problems starting psqgl then go back to the previous section. The diagnostics of
createdb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psql is listening to you and that
you can type SQL queries into a work space maintained by psgl. Try out these commands:

mydb=> SELECT version();
version

PostgreSQL 9.6.20 on x86_64-pc—-linux—gnu, compiled by gcc (Debian 4.9.2-10) 4.9.2, 64-Db
(1 row)

mydb=> SELECT current_date;
date

2016-01-07
(1 row)

mydb=> SELECT 2 + 2;

?column?

The psgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

mydb=> \h

To get out of psql, type:
mydb=> \q

and psgl will quit and return you to your command shell. (For more internal commands, type \ 2 at
the psgl prompt.) The full capabilities of psql are documented in psql. In this tutorial we will not
use these features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial
is only intended to give you an introduction and is in no way a complete tutorial on SQL. Numer-
ous books have been written on SQL, including Understanding the New SQL and A Guide to the
SQL Standard. You should be aware that some PostgreSQL language features are extensions to the
standard.

In the examples that follow, we assume that you have created a database named mydb, as described in
the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/. (Binary distributions of PostgreSQL might not compile these files.) To use those
files, first change to that directory and run make:

$ ed/src/tutorial
S make

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to
start the tutorial, do the following:

S ed/tutorial
$ psql -s mydb

mydb=> \i basics.sql

The \ i command reads in commands from the specified file. psql’s —s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section
are in the file basics.sql.

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for zable. The notion
of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-
oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named
columns, and each column is of a specific data type. Whereas columns have a fixed order in each row,
it is important to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a database cluster.

Chapter 2. The SQL Language

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar (80),

temp_lo int, -— low temperature
temp_hi int, —— high temperature
prcp real, —-— precipitation
date date

)

You can enter this into psgl with the line breaks. psgl will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you
can type the command aligned differently than above, or even all on one line. Two dashes (“--") in-
troduce comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive
about key words and identifiers, except when identifiers are double-quoted to preserve the case (not
done above).

varchar (80) specifies a data type that can store arbitrary character strings up to 80 characters in
length. int is the normal integer type. real is a type for storing single precision floating-point num-
bers. date should be self-explanatory. (Yes, the column of type date is also named date. This might
be convenient or confusing — you choose.)

PostgreSQL supports the standard SQL types int, smallint, real, double precision,
char (N), varchar (N), date, time, timestamp, and interval, as well as other types of general
utility and a rich set of geometric types. PostgreSQL can be customized with an arbitrary number of
user-defined data types. Consequently, type names are not key words in the syntax, except where
required to support special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar (80),
location point

)i

The point type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differ-
ently you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows

The INSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES (’San Francisco’, 46, 50, 0.25, 71994-11-27");

Chapter 2. The SQL Language

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes (), as in the example. The date type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES (’San Francisco’, ' (-194.0, 53.0)");

The syntax used so far requires you to remember the order of the columns. An alternative syntax
allows you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES (’San Francisco’, 43, 57, 0.0, 71994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES (’1994-11-29’, 'Hayward’, 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implic-
itly.
Please enter all the commands shown above so you have some data to work with in the following

sections.

You could also have used copy to load large amounts of data from flat-text files. This is usually
faster because the COPY command is optimized for this application while allowing less flexibility than
INSERT. An example would be:

COPY weather FROM ’ /home/user/weather.txt’;

where the file name for the source file must be available on the machine running the backend process,
not the client, since the backend process reads the file directly. You can read more about the copy
command in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT * FROM weather;

Here = is a shorthand for “all columns”. ! So the same result would be had with:
SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:

city | temp_lo | temp_hi | prcp | date

1.

While SELECT =« is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a

column to the table would change the results.

Chapter 2. The SQL Language

——————————————— t———— - —————
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward | 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can
do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:

city | temp_avg | date
,,,,,,,,,,,,,,, T
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The As clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression
is true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification.
For example, the following retrieves the weather of San Francisco on rainy days:

SELECT % FROM weather
WHERE city = ’San Francisco’ AND prcp > 0.0;

Result:

San Francisco
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT x FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
——————————————— B e e R T
Hayward | 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn’t fully specified, and so you might get the San Francisco rows in
either order. But you’d always get the results shown above if you do:

SELECT * FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

Hayward
San Francisco
(2 rows)

Chapter 2. The SQL Language

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT

and ORDER BY together:

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such a way that multiple rows of the table are being processed at the
same time. A query that accesses multiple rows of the same or different tables at one time is called
a join query. As an example, say you wish to list all the weather records together with the location
of the associated city. To do that, we need to compare the city column of each row of the weather
table with the name column of all rows in the cities table, and select the pairs of rows where these

values match.

Note: This is only a conceptual model. The join is usually performed in a more efficient manner
than actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:

SELECT «
FROM weather, cities
WHERE city = name;
city | temp_lo
_______________ [P
San Francisco | 46
San Francisco | 43

(2 rows)

Observe two things about the result set:

1994-11-27
1994-11-29

San Francisco
San Francisco

(-194,53)
(-194,53)

+ There is no result row for the city of Hayward. This is because there is no matching entry in the
cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will
see shortly how this can be fixed.

2.

In some database systems, including older versions of PostgreSQL, the implementation of DISTINCT automatically orders

the rows and so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not
guarantee that DISTINCT causes the rows to be ordered.

Chapter 2. The SQL Language

« There are two columns containing the city name. This is correct because the lists of columns from
the weather and cities tables are concatenated. In practice this is undesirable, though, so you
will probably want to list the output columns explicitly rather than using »:

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to.
If there were duplicate column names in the two tables you’d need to gualify the column names to
show which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities
WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won’t
fail if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT «
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do
is to scan the weather table and for each row to find the matching cities row(s). If no matching
row is found we want some “empty values” to be substituted for the cities table’s columns. This
kind of query is called an outer join. (The joins we have seen so far are inner joins.) The command
looks like this:

SELECT «
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— B E e e bt Tt e
Hayward | 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to
find all the weather records that are in the temperature range of other weather records. So we need to
compare the temp_lo and temp_hi columns of each weather row to the temp_lo and temp_hi
columns of all other weather rows. We can do this with the following query:

10

Chapter 2. The SQL Language

SELECT Wl.city, Wl.temp_lo AS low, Wl.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather Wl, weather W2
WHERE Wl.temp_lo < W2.temp_lo
AND Wl.temp_hi > W2.temp_hi;

city | low | high | city | low | high
——————————————— s et e e Atk
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as w1 and w2 to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT «
FROM weather w, cities c¢
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max (temp_lo) FROM weather;

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weather WHERE temp_lo = max(temp_1lo); WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation;
so obviously it has to be evaluated before aggregate functions are computed.) However, as is often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather
WHERE temp_lo = (SELECT max (temp_lo) FROM weather);

San Francisco
(1 row)

11

Chapter 2. The SQL Language

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
maximum low temperature observed in each city with:

SELECT city, max(temp_1lo)
FROM weather
GROUP BY city;

city | max
,,,,,,,,,,,,,,, I
Hayward | 37

San Francisco | 46

(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows match-
ing that city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_1lo)
FROM weather
GROUP BY city
HAVING max (temp_lo) < 40;

city | max
_________ b
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all temp_1lo values below 40. Finally, if
we only care about cities whose names begin with “S”, we might do:

SELECT city, max(temp_1lo)
FROM weather
WHERE city LIKE ’'S%'@®
GROUP BY city
HAVING max (temp_lo) < 40;

© The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL’s WHERE and HAVING
clauses. The fundamental difference between WHERE and HAVING is this: WHERE selects input rows
before groups and aggregates are computed (thus, it controls which rows go into the aggregate com-
putation), whereas HAVING selects group rows after groups and aggregates are computed. Thus, the
WHERE clause must not contain aggregate functions; it makes no sense to try to use an aggregate to
determine which rows will be inputs to the aggregates. On the other hand, the HAVING clause al-
ways contains aggregate functions. (Strictly speaking, you are allowed to write a HAVING clause that
doesn’t use aggregates, but it’s seldom useful. The same condition could be used more efficiently at
the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

12

Chapter 2. The SQL Language

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather

SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > 71994-11-28';

Look at the new state of the data:

SELECT = FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B et B et T T e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward \ 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested
in the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = ’'Hayward’;
All weather records belonging to Hayward are removed.

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B i B e et T T
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29

(2 rows)

One should be wary of statements of the form

DELETE FROM tablename;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The
system will not request confirmation before doing this!

13

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL. We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so
it will be useful to have read that chapter. Some examples from this chapter can also be found in
advanced. sql in the tutorial directory. This file also contains some sample data to load, which is
not repeated here. (Refer to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can create a view over the query, which gives a name to the query that you can refer
to like an ordinary table:

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to en-
capsulate the details of the structure of your tables, which might change as your application evolves,
behind consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys

Recall the weather and cities tables from Chapter 2. Consider the following problem: You want
to make sure that no one can insert rows in the weather table that do not have a matching entry
in the cities table. This is called maintaining the referential integrity of your data. In simplistic
database systems this would be implemented (if at all) by first looking at the cities table to check
if a matching record exists, and then inserting or rejecting the new weather records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
city varchar (80) primary key,
location point

14

Chapter 3. Advanced Features

CREATE TABLE weather (
city varchar (80) references cities(city),
temp_lo int,
temp_hi int,
prcp real,
date date
)i

Now try inserting an invalid record:
INSERT INTO weather VALUES (’'Berkeley’, 45, 53, 0.0, ’1994-11-28");

ERROR: insert or update on table "weather" violates foreign key constraint "weather_cit
DETAIL: Key (city)=(Berkeley) 1is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well
as total deposit balances for branches. Suppose that we want to record a payment of $100.00 from
Alice’s account to Bob’s account. Simplifying outrageously, the SQL commands for this might look
like:

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’Alice’;
UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Alice’);
UPDATE accounts SET balance = balance + 100.00
WHERE name = ’Bob’;
UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Bob’);

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank’s officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for
a system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates into a transaction gives us this guarantee. A transaction is said to
be atomic: from the point of view of other transactions, it either happens completely or not at all.

15

Chapter 3. Advanced Features

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won’t be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in a crash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic up-
dates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice’s branch but not the credit to Bob’s
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent
effect on the database, but also in terms of their visibility as they happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGIN and COMMIT commands. So our banking transaction would actually look like:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;

-— etc etc

COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the command ROLLBACK instead of COMMIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not
issue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful)
coMMIT wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes
called a transaction block.

Note: Some client libraries issue BEcTN and comutT commands automatically, so that you might
get the effect of transaction blocks without asking. Check the documentation for the interface you
are using.

It’s possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction’s database changes between defining the savepoint and rolling
back to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won’t need to roll back to a particular savepoint again, it can be
released, so the system can free some resources. Keep in mind that either releasing or rolling back to
a savepoint will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible as a unit to
other sessions, while the rolled-back actions never become visible at all.

16

Chapter 3. Advanced Features

Remembering the bank database, suppose we debit $100.00 from Alice’s account, and credit Bob’s
account, only to find later that we should have credited Wally’s account. We could do it using save-
points like this:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’'Alice’;

SAVEPOINT my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;

-— oops ... forget that and use Wally’s account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’"Wally’;

COMMIT;

This example is, of course, oversimplified, but there’s a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transac-
tion block that was put in aborted state by the system due to an error, short of rolling it back completely
and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.
But unlike regular aggregate functions, use of a window function does not cause rows to become
grouped into a single output row — the rows retain their separate identities. Behind the scenes, the
window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee’s salary with the average salary in his
or her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg
——————————— -t
develop | 11 | 5200 | 5020.0000000000000000
develop | 7 4200 | 5020.0000000000000000
develop | 9 | 4500 | 5020.0000000000000000
develop | 8 | 6000 | 5020.0000000000000000
develop | 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 | 3900 | 3700.0000000000000000
sales | 3 4800 | 4866.6666666666666667
sales | 1] 5000 | 4866.6666666666666667
sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the regular avg
aggregate function, but the OVER clause causes it to be treated as a window function and computed
across an appropriate set of rows.)

17

Chapter 3. Advanced Features

A window function call always contains an OVER clause directly following the window function’s
name and argument(s). This is what syntactically distinguishes it from a regular function or aggregate
function. The OVER clause determines exactly how the rows of the query are split up for processing by
the window function. The PARTITION BY list within OVER specifies dividing the rows into groups, or
partitions, that share the same values of the PARTITION BY expression(s). For each row, the window
function is computed across the rows that fall into the same partition as the current row.

You can also control the order in which rows are processed by window functions using ORDER BY
within ovER. (The window ORDER BY does not even have to match the order in which the rows are
output.) Here is an example:

SELECT depname, empno, salary,
rank () OVER (PARTITION BY depname ORDER BY salary DESC)
FROM empsalary;

depname | empno | salary | rank
——————————— e e
develop | 8 | 6000 | 1
develop | 10 | 5200 | 2
develop | 11 | 5200 | 2
develop | 9 | 4500 | 4
develop | 7 4200 | 5
personnel | 2 | 3900 | 1
personnel | 5 3500 | 2
sales | 1] 5000 | 1
sales | 4 | 4800 | 2
sales | 3 4800 | 2
(10 rows)

As shown here, the rank function produces a numerical rank within the current row’s partition for
each distinct ORDER BY value, in the order defined by the ORDER BY clause. rank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query’s
FROM clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row
removed because it does not meet the WHERE condition is not seen by any window function. A query
can contain multiple window functions that slice up the data in different ways by means of different
OVER clauses, but they all act on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also
possible to omit PARTITION BY, in which case there is just one partition containing all the rows.

There is another important concept associated with window functions: for each row, there is a set of
rows within its partition called its window frame. Many (but not all) window functions act only on
the rows of the window frame, rather than of the whole partition. By default, if ORDER BY is supplied
then the frame consists of all rows from the start of the partition up through the current row, plus any
following rows that are equal to the current row according to the ORDER BY clause. When ORDER BY
is omitted the default frame consists of all rows in the partition. ' Here is an example using sum:

SELECT salary, sum(salary) OVER () FROM empsalary;

salary | sum
,,,,,,,, IS

5200 | 47100

5000 | 47100

1. There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for

details.

18

Chapter 3. Advanced Features

3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100
(10 rows)

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get
very different results:

SELECT salary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

salary | sum
,,,,,,,, IS
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100
(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any dupli-
cates of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They
are forbidden elsewhere, such as in GROUP BY, HAVING and WHERE clauses. This is because they
logically execute after the processing of those clauses. Also, window functions execute after regular
aggregate functions. This means it is valid to include an aggregate function call in the arguments of a
window function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depname, empno, salary, enroll_date
FROM
(SELECT depname, empno, salary, enroll_date,
rank () OVER (PARTITION BY depname ORDER BY salary DESC, empno) AS pos
FROM empsalary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having rank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for
several functions. Instead, each windowing behavior can be named in a WINDOW clause and then
referenced in OVER. For example:

19

Chapter 3. Advanced Features

SELECT sum(salary) OVER w, avg(salary) OVER w
FROM empsalary
WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.21, Section 7.2.5, and
the SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let’s create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so
you want some way to show the capitals implicitly when you list all cities. If you’re really clever you
might invent some scheme like this:

CREATE TABLE capitals (

name text,

population real,

elevation int, -— (in ft)
state char (2)

)

CREATE TABLE non_capitals (

name text,
population real,
elevation int -— (in ft)

)i

CREATE VIEW cities AS
SELECT name, population, elevation FROM capitals
UNION
SELECT name, population, elevation FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.

A better solution is this:

CREATE TABLE cities (
name text,
population real,
elevation int -— (in ft)

)i
CREATE TABLE capitals (

state char (2) UNIQUE NOT NULL
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and elevation) from
its parent, cities. The type of the column name is text, a native PostgreSQL type for variable

20

Chapter 3. Advanced Features

length character strings. The capitals table has an additional column, st ate, which shows its state
abbreviation. In PostgreSQL, a table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located

at an elevation over 500 feet:

SELECT name, elevation
FROM cities
WHERE elevation > 500;

which returns:

name | elevation
___________ b
Las Vegas | 2174
Mariposa | 1953
Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an elevation over 500 feet:

SELECT name, elevation
FROM ONLY cities
WHERE elevation > 500;

name | elevation
___________ B,
Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here the oNLY before cities indicates that the query should be run over only the cities table, and
not tables below cities in the inheritance hierarchy. Many of the commands that we have already
discussed — SELECT, UPDATE, and DELETE — support this ONLY notation.

Note: Although inheritance is frequently useful, it has not been integrated with unique constraints
or foreign keys, which limits its usefulness. See Section 5.9 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to
more resources.

2. https://www.postgresql.org

21

Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database,
and how to query it. The middle part lists the available data types and functions for use in SQL
commands. The rest treats several aspects that are important for tuning a database for optimal perfor-
mance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full
understanding of the topics without having to refer forward too many times. The chapters are intended
to be self-contained, so that advanced users can read the chapters individually as they choose. The
information in this part is presented in a narrative fashion in topical units. Readers looking for a
complete description of a particular command should see Part VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it
contains several rules and concepts that are implemented inconsistently among SQL databases or that
are specific to PostgreSQL.

4.1. Lexical Structure

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
6,9

terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which
tokens are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special
character symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not
be if there is no ambiguity (which is generally only the case if a special character is adjacent to some
other token type).

For example, the following is (syntactically) valid SQL input:

SELECT % FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, ’"hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. The first few tokens are generally the command name, so in the above ex-
ample we would usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for
instance the UPDATE command always requires a SET token to appear in a certain position, and this
particular variation of INSERT also requires a VALUES in order to be complete. The precise syntax
rules for each command are described in Part VI.

4.1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that
is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are exam-
ples of identifiers. They identify names of tables, columns, or other database objects, depending on
the command they are used in. Therefore they are sometimes simply called “names”. Key words and
identifiers have the same lexical structure, meaning that one cannot know whether a token is an iden-
tifier or a key word without knowing the language. A complete list of key words can be found in
Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks
and non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be
letters, underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers
according to the letter of the SQL standard, so their use might render applications less portable. The

24

Chapter 4. SQL Syntax

SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
length is 63 bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant

in src/include/pg_config_manual.h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;

can equivalently be written as:

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by en-
closing an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an
identifier, never a key word. So "select" could be used to refer to a column or table named “select”,
whereas an unquoted select would be taken as a key word and would therefore provoke a parse
error when used where a table or column name is expected. The example can be written with quoted
identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. This variant starts with Us (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example Us"foo". (Note that this
creates an ambiguity with the operator &. Use spaces around the operator to avoid this problem.) Inside
the quotes, Unicode characters can be specified in escaped form by writing a backslash followed by
the four-digit hexadecimal code point number or alternatively a backslash followed by a plus sign
followed by a six-digit hexadecimal code point number. For example, the identifier "data" could be
written as

Us"d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&"d!0061t!+000061" UESCAPE ' !’

25

Chapter 4. SQL Syntax

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single
quotes, not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encod-
ings are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit
and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code
points larger than U+FFFF, although the availability of the 6-digit form technically makes this un-
necessary. (Surrogate pairs are not stored directly, but combined into a single code point that is then
encoded in UTF-8.)

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers FOO, foo, and "foo" are considered the same by PostgreSQL, but
"Foo" and "FOO" are different from these three and each other. (The folding of unquoted names to
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the
standard. If you want to write portable applications you are advised to always quote a particular name
or never quote it.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (), for
example ' This is a string’. To include a single-quote character within a string constant, write
two adjacent single quotes, e.g., ' Dianne”s horse’. Note that this is not the same as a double-quote
character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT '’ foo’
"bar’;

is equivalent to:

SELECT ' foobar’;

but:

SELECT ' foo’ "bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

26

Chapter 4. SQL Syntax

4.1.2.2. String Constants with C-style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard.
An escape string constant is specified by writing the letter E (upper or lower case) just before the
opening single quote, e.g., E’ foo’. (When continuing an escape string constant across lines, write
E only before the first opening quote.) Within an escape string, a backslash character (\) begins a
C-like backslash escape sequence, in which the combination of backslash and following character(s)
represent a special byte value, as shown in Table 4-1.

Table 4-1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\o, \oo, \ooo (0c=0-7) octal byte value

\xh, \xhh (h=0-9,A-F) hexadecimal byte value

\uxxxx, \Uxxxxxxxx (x=0-9, A -F) 16 or 32-bit hexadecimal Unicode character
value

Any other character following a backslash is taken literally. Thus, to include a backslash character,
write two backslashes (\\). Also, a single quote can be included in an escape string by writing \’, in
addition to the normal way of ”.

It is your responsibility that the byte sequences you create, especially when using the octal or hex-
adecimal escapes, compose valid characters in the server character set encoding. When the server
encoding is UTF-8, then the Unicode escapes or the alternative Unicode escape syntax, explained in
Section 4.1.2.3, should be used instead. (The alternative would be doing the UTF-8 encoding by hand
and writing out the bytes, which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF8. When other server
encodings are used, only code points in the ASCII range (up to \u007F) can be specified. Both the
4-digit and the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters
with code points larger than U+FFFF, although the availability of the 8-digit form technically makes
this unnecessary. (When surrogate pairs are used when the server encoding is UTF8, they are first
combined into a single code point that is then encoded in UTF-8.)

Caution

If the configuration parameter standard_conforming_strings is off, then Post-
greSQL recognizes backslash escapes in both regular and escape string con-
stants. However, as of PostgreSQL 9.1, the default is on, meaning that back-
slash escapes are recognized only in escape string constants. This behavior
is more standards-compliant, but might break applications which rely on the
historical behavior, where backslash escapes were always recognized. As a
workaround, you can set this parameter to of £, but it is better to migrate away
from using backslash escapes. If you need to use a backslash escape to rep-
resent a special character, write the string constant with an k.

In addition to standard_conforming_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes
in string constants.

27

Chapter 4. SQL Syntax

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with Us (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example Us’ foo’ . (Note that this creates an ambiguity with the operator &. Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number
or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point
number. For example, the string " data’ could be written as

Us’d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

Us&’\0441\043B\043E\043D’

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&’d!0061t!+000061" UESCAPE ’!’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encod-
ings are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit
and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code
points larger than U+FFFF, although the availability of the 6-digit form technically makes this unnec-
essary. (When surrogate pairs are used when the server encoding is UTF 8, they are first combined into
a single code point that is then encoded in UTF-8.)

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_strings is turned on. This is because otherwise this syntax could confuse clients
that parse the SQL statements to the point that it could lead to SQL injections and similar security
issues. If the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, write it twice.

4.1.2.4. Dollar-quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, PostgreSQL provides another
way, called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a
dollar sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence
of characters that makes up the string content, a dollar sign, the same tag that began this dollar quote,
and a dollar sign. For example, here are two different ways to specify the string “Dianne’s horse”
using dollar quoting:

$$Dianne’s horses

28

Chapter 4. SQL Syntax
$SomeTag$Dianne’s horse$SomeTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always writ-
ten literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level.
This is most commonly used in writing function definitions. For example:

Sfunction$
BEGIN
RETURN ($1 ~ g[\t\r\n\v\\1q);
END;
Sfunction$

Here, the sequence g [\t\r\n\v\\1s$gs represents a dollar-quoted literal string [\t\r\n\v\\],
which will be recognized when the function body is executed by PostgreSQL. But since the sequence
does not match the outer dollar quoting delimiter $functions$, it is just some more characters within
the constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that
it cannot contain a dollar sign. Tags are case sensitive, S0 Stag$String contentS$tag$ is correct,
but $TAGSString content$tags$ is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write com-
plicated string literals than the standard-compliant single quote syntax. It is particularly useful when
representing string constants inside other constants, as is often needed in procedural function defini-
tions. With single-quote syntax, each backslash in the above example would have to be written as four
backslashes, which would be reduced to two backslashes in parsing the original string constant, and
then to one when the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-string Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately
before the opening quote (no intervening whitespace), e.g., B’ 1001’ . The only characters allowed
within bit-string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading x (upper
or lower case), e.g., X’ LFF’ . This notation is equivalent to a bit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits. |[digits] [e[+-]digits]
[digits] .digits[e[+-]digits]
digitse[+-]digits

29

Chapter 4. SQL Syntax

where digits is one or more decimal digits (O through 9). At least one digit must be before or
after the decimal point, if one is used. At least one digit must follow the exponent marker (e), if one
is present. There cannot be any spaces or other characters embedded in the constant. Note that any
leading plus or minus sign is not actually considered part of the constant; it is an operator applied to
the constant.

These are some examples of valid numeric constants:

42

35

4.

.001

5e2
1.925¢-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint
if its value fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that
contain decimal points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type de-
pending on context. When necessary, you can force a numeric value to be interpreted as a specific data
type by casting it. For example, you can force a numeric value to be treated as type real (float4)
by writing:

REAL ’1.23" —-- string style
1.23::REAL —-— PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type ' string’
! string’ ::type
CAST ("string’ AS type)

The string constant’s text is passed to the input conversion routine for the type called ¢ ype. The result
is a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is assigned directly to a table column), in which
case it is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:
typename (' string’)

but not all type names can be used in this way; see Section 4.2.9 for details.

The : :, CAST (), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type ’ string’
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type

30

Chapter 4. SQL Syntax

" string’ syntax is that it does not work for array types; use : : or CAST () to specify the type of an
array constant.

The cAST () syntax conforms to SQL. The type ’string’ syntax is a generalization of the standard:
SQL specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax
with : : is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the follow-
ing list:

+-F/<>=~1@# D &I ?

There are a few restrictions on operator names, however:

« —-and /=« cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

« A multiple-character operator name cannot end in + or —, unless the name also contains at least one
of these characters:

~l@#DP N&I?

For example, @- is an allowed operator name, but «- is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator
named @, you cannot write X«@Y; you must write X~ @Y to ensure that PostgreSQL reads it as two
operator names not one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element is
described. This section only exists to advise the existence and summarize the purposes of these char-
acters.

A dollar sign (s) followed by digits is used to represent a positional parameter in the body of
a function definition or a prepared statement. In other contexts the dollar sign can be part of an
identifier or a dollar-quoted string constant.

« Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

« Brackets ([1) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

« Commas (,) are used in some syntactical constructs to separate the elements of a list.

31

Chapter 4. SQL Syntax
« The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

« The colon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

+ The asterisk (x) is used in some contexts to denote all the fields of a table row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

« The period (.) is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the
line, e.g.:

—— This 1is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment =/

*/

where the comment begins with /» and extends to the matching occurrence of » /. These block com-
ments nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks
of code that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

4.1.6. Operator Precedence

Table 4-2 shows the precedence and associativity of the operators in PostgreSQL. Most operators
have the same precedence and are left-associative. The precedence and associativity of the operators
is hard-wired into the parser.

You will sometimes need to add parentheses when using combinations of binary and unary operators.
For instance:

SELECT 5 ! - 6;
will be parsed as:
SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an
infix one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

This is the price one pays for extensibility.

32

Table 4-2. Operator Precedence (highest to lowest)

Chapter 4. SQL Syntax

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL-style typecast

[] left array element selection

+ - right unary plus, unary minus

~ left exponentiation

x /% left multiplication, division,
modulo

+ - left addition, subtraction

(any other operator) left all other native and user-defined
operators

BETWEEN IN LIKE ILIKE range containment, set

SIMILAR membership, string matching

<>=<=>=<> comparison operators

IS ISNULL NOTNULL IS TRUE, IS FALSE, IS
NULL, IS DISTINCT FROM,
etc

NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:

SELECT 3 OPERATOR (pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4-2 for “any other
operator”. This is true no matter which specific operator appears inside OPERATOR () .

Note: PostgreSQL versions before 9.5 used slightly different operator precedence rules. In partic-
ular, <= >=and <> used to be treated as generic operators; 1s tests used to have higher priority;
and NnoT BETWEEN and related constructs acted inconsistently, being taken in some cases as hav-
ing the precedence of noT rather than BETweEN. These rules were changed for better compliance
with the SQL standard and to reduce confusion from inconsistent treatment of logically equivalent
constructs. In most cases, these changes will result in no behavioral change, or perhaps in “no
such operator” failures which can be resolved by adding parentheses. However there are corner
cases in which a query might change behavior without any parsing error being reported. If you
are concerned about whether these changes have silently broken something, you can test your
application with the configuration parameter operator_precedence_warning turned on to see if
any warnings are logged.

33

Chapter 4. SQL Syntax

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:

+ A constant or literal value

+ A column reference

« A positional parameter reference, in the body of a function definition or prepared statement
+ A subscripted expression

« A field selection expression
« An operator invocation
A function call

+ An aggregate expression

« A window function call

« A type cast

« A collation expression

+ A scalar subquery

« An array constructor

+ A row constructor

+ Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

4.2.1. Column References

A column can be referenced in the form:

correlation.columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table
defined by means of a FROM clause. The correlation name and separating dot can be omitted if the
column name is unique across all the tables being used in the current query. (See also Chapter 7.)

34

Chapter 4. SQL Syntax

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter reference is:

Snumber

For example, consider the definition of a function, dept, as:

CREATE FUNCTION dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the s1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing

expression|subscript]
or multiple adjacent elements (an “array slice”) can be extracted by writing
expression|lower_subscript:upper._subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which
will be rounded to the nearest integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multidimensional. For example:
mytable.arraycolumn[4]

mytable.two_d_column[17] [34]

$1[10:42]

(arrayfunction(a,b)) [42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression.fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

35

Chapter 4. SQL Syntax

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)) .col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An
important special case is extracting a field from a table column that is of a composite type:

(compositecol) .somefield
(mytable.compositecol) .somefield

The parentheses are required here to show that compositecol is a column name not a table name,
or that mytable is a table name not a schema name in the second case.

You can ask for all fields of a composite value by writing . *:
(compositecol) . *

This notation behaves differently depending on context; see Section 8.16.5 for details.

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND,
OR, and NOT, or is a qualified operator name in the form:

OPERATOR (schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function_name ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt (2)

The list of built-in functions is in Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precau-
tions from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

36

Chapter 4. SQL Syntax

Note: A function that takes a single argument of composite type can optionally be called using
field-selection syntax, and conversely field selection can be written in functional style. That is, the
notations col (table) and table.col are interchangeable. This behavior is not SQL-standard
but is provided in PostgreSQL because it allows use of functions to emulate “computed fields”.
For more information see Section 8.16.5.

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ... 1 [order_by clause]) [FILTER (WHERE filter_clause) |
aggregate_name (ALL expression [, ...] [order_by clause]) [FILTER (WHERE filter_clause
aggregate_name (DISTINCT expression [, ...] [order_by clause]) [FILTER (WHERE filter c
aggregate_name (%) [FILTER (WHERE filter _clause)]

aggregate_name ([expression [, ...] 1) WITHIN GROUP (order_by_clause) [FILTER (WHER

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name)
and expression is any value expression that does not itself contain an aggregate expression or a
window function call. The optional order_by clause and filter_ clause are described below.

The first form of aggregate expression invokes the aggregate once for each input row. The second
form is the same as the first, since ALL is the default. The third form invokes the aggregate once for
each distinct value of the expression (or distinct set of values, for multiple expressions) found in the
input rows. The fourth form invokes the aggregate once for each input row; since no particular input
value is specified, it is generally only useful for the count (x) aggregate function. The last form is
used with ordered-set aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s)
yield null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in
aggregates.

For example, count (x) yields the total number of input rows; count (£1) yields the number of
input rows in which £1 is non-null, since count ignores nulls; and count (distinct f£1) yields
the number of distinct non-null values of £1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases
this does not matter; for example, min produces the same result no matter what order it receives
the inputs in. However, some aggregate functions (such as array_agg and string_agg) produce
results that depend on the ordering of the input rows. When using such an aggregate, the optional
order_by_clause can be used to specify the desired ordering. The order_by_clause has the
same syntax as for a query-level ORDER BY clause, as described in Section 7.5, except that its expres-
sions are always just expressions and cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM table;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after
all the aggregate arguments. For example, write this:

SELECT string_agg(a, ’,’ ORDER BY a) FROM table;

37

Chapter 4. SQL Syntax

not this:
SELECT string_agg(a ORDER BY a, ’,’) FROM table; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with
two ORDER BY keys (the second one being rather useless since it’s a constant).

If DISTINCT is specified in addition to an order_by_clause, then all the ORDER BY expressions
must match regular arguments of the aggregate; that is, you cannot sort on an expression that is not
included in the DISTINCT list.

Note: The ability to specify both prsTINCT and orDER BY in an aggregate function is a Post-
greSQL extension.

Placing ORDER BY within the aggregate’s regular argument list, as described so far, is used when
ordering the input rows for a “normal” aggregate for which ordering is optional. There is a subclass
of aggregate functions called ordered-set aggregates for which an order_by_clause is required,
usually because the aggregate’s computation is only sensible in terms of a specific ordering of its
input rows. Typical examples of ordered-set aggregates include rank and percentile calculations. For
an ordered-set aggregate, the order_by_clause is written inside WITHIN GROUP (...), as shown
in the final syntax alternative above. The expressions in the order._by_clause are evaluated once
per input row just like normal aggregate arguments, sorted as per the order_by clause’s require-
ments, and fed to the aggregate function as input arguments. (This is unlike the case for a non-WITHIN
GROUP order._by_clause, which is not treated as argument(s) to the aggregate function.) The argu-
ment expressions preceding WITHIN GROUP, if any, are called direct arguments to distinguish them
from the aggregated arguments listed in the order_by_clause. Unlike normal aggregate arguments,
direct arguments are evaluated only once per aggregate call, not once per input row. This means that
they can contain variables only if those variables are grouped by GROUP BY; this restriction is the same
as if the direct arguments were not inside an aggregate expression at all. Direct arguments are typi-
cally used for things like percentile fractions, which only make sense as a single value per aggregation
calculation. The direct argument list can be empty; in this case, write just () not (=) . (PostgreSQL
will actually accept either spelling, but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont (0.5) WITHIN GROUP (ORDER BY income) FROM households;
percentile_cont

which obtains the 50th percentile, or median, value of the income column from table households.
Here, 0. 5 is a direct argument; it would make no sense for the percentile fraction to be a value varying
across rows.

If FILTER is specified, then only the input rows for which the rfilter clause evaluates to true are
fed to the aggregate function; other rows are discarded. For example:

SELECT

count (#) AS unfiltered,

count (*) FILTER (WHERE i1 < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

38

Chapter 4. SQL Syntax

The predefined aggregate functions are described in Section 9.20. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command.
It is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.22), the aggre-
gate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s
arguments (and filter_clause if any) contain only outer-level variables: the aggregate then be-
longs to the nearest such outer level, and is evaluated over the rows of that query. The aggregate
expression as a whole is then an outer reference for the subquery it appears in, and acts as a constant
over any one evaluation of that subquery. The restriction about appearing only in the result list or
HAVING clause applies with respect to the query level that the aggregate belongs to.

4.2.8. Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike regular aggregate function calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function is able to scan all the rows that would be part of the current row’s group according to
the grouping specification (PARTITION BY list) of the window function call. The syntax of a window
function call is one of the following:

function_name (|[expression [, expression ...]]) [FILTER (WHERE filter_clause)] OVER wind
function_name (|[expression [, expression ...]1]) [FILTER (WHERE filter clause)] OVER (wi
function _name (*) [FILTER (WHERE filter clause)] OVER window_name

function_name (*) [FILTER (WHERE filter clause)] OVER (window _definition)

where window_definition has the syntax

existing_window_name]
PARTITION BY expression [, ...]]
ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST } 1 [, ...]1 1

frame_clause]

[
[
[
[

and the optional frame_clause can be one of

{ RANGE | ROWS } frame_start
{ RANGE | ROWS } BETWEEN frame_ start AND frame end

where frame_start and frame_end can be one of

UNBOUNDED PRECEDING
value PRECEDING
CURRENT ROW

value FOLLOWING
UNBOUNDED FOLLOWING

Here, expression represents any value expression that does not itself contain window function calls.

window_name is a reference to a named window specification defined in the query’s WINDOW clause.
Alternatively, a full window_definition can be given within parentheses, using the same syntax

39

Chapter 4. SQL Syntax

as for defining a named window in the winDow clause; see the SELECT reference page for details.
It’s worth pointing out that OVER wname is not exactly equivalent to OVER (wname) ; the latter im-
plies copying and modifying the window definition, and will be rejected if the referenced window
specification includes a frame clause.

The PARTITION BY option groups the rows of the query into partitions, which are processed sepa-
rately by the window function. PARTITION BY works similarly to a query-level GROUP BY clause,
except that its expressions are always just expressions and cannot be output-column names or num-
bers. Without PARTITION BY, all rows produced by the query are treated as a single partition. The
ORDER BY option determines the order in which the rows of a partition are processed by the window
function. It works similarly to a query-level ORDER BY clause, but likewise cannot use output-column
names or numbers. Without ORDER BY, rows are processed in an unspecified order.

The frame_clause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The
frame can be specified in either RANGE or ROWS mode; in either case, it runs from the frame start
to the frame_end. If frame_end is omitted, it defaults to CURRENT ROW.

A frame_start of UNBOUNDED PRECEDING means that the frame starts with the first row of the
partition, and similarly a frame_end of UNBOUNDED FOLLOWING means that the frame ends with
the last row of the partition.

In RANGE mode, a frame start of CURRENT ROW means the frame starts with the current row’s
first peer row (a row that ORDER BY considers equivalent to the current row), while a frame _end
of CURRENT ROW means the frame ends with the last equivalent ORDER BY peer. In ROWS mode,
CURRENT ROW simply means the current row.

The value PRECEDING and value FOLLOWING cases are currently only allowed in ROWS mode. They
indicate that the frame starts or ends the specified number of rows before or after the current row.
value must be an integer expression not containing any variables, aggregate functions, or window
functions. The value must not be null or negative; but it can be zero, which just selects the current
TOW.

The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE
BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. With ORDER BRY, this sets the frame to be
all rows from the partition start up through the current row’s last ORDER BY peer. Without ORDER
BY, all rows of the partition are included in the window frame, since all rows become peers of the
current row.

Restrictions are that frame start cannot be UNBOUNDED FOLLOWING, frame_ end cannot be
UNBOUNDED PRECEDING, and the frame_end choice cannot appear earlier in the above list than the
frame_start choice — for example RANGE BETWEEN CURRENT ROW AND value PRECEDING is
not allowed.

If FILTER is specified, then only the input rows for which the filter clause evaluates to true
are fed to the window function; other rows are discarded. Only window functions that are aggregates
accept a FILTER clause.

The built-in window functions are described in Table 9-56. Other window functions can be added
by the user. Also, any built-in or user-defined normal aggregate function can be used as a window
function. Ordered-set aggregates presently cannot be used as window functions, however.

The syntaxes using » are used for calling parameter-less aggregate functions as window functions,
for example count (») OVER (PARTITION BY x ORDER BY y). The asterisk (x) is customarily
not used for non-aggregate window functions. Aggregate window functions, unlike normal aggregate
functions, do not allow DISTINCT or ORDER BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

40

Chapter 4. SQL Syntax

More information about window functions can be found in Section 3.5, Section 9.21, and Section
7.2.5.

4.2.9. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)

expression: :type

The caST syntax conforms to SQL; the syntax with : : is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this is
subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to an
unadorned string literal represents the initial assignment of a type to a literal constant value, and so it
will succeed for any type (if the contents of the string literal are acceptable input syntax for the data
type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expres-
sion must produce (for example, when it is assigned to a table column); the system will automatically
apply a type cast in such cases. However, automatic casting is only done for casts that are marked
“OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting
syntax. This restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example,
double precision cannot be used this way, but the equivalent float8 can. Also, the names
interval, time, and t imestamp can only be used in this fashion if they are double-quoted, because
of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and
should probably be avoided.

Note: The function-like syntax is in fact just a function call. When one of the two standard cast
syntaxes is used to do a run-time conversion, it will internally invoke a registered function to
perform the conversion. By convention, these conversion functions have the same name as their
output type, and thus the “function-like syntax” is nothing more than a direct invocation of the
underlying conversion function. Obviously, this is not something that a portable application should
rely on. For further details see CREATE CAST.

4.2.10. Collation Expressions

The cOLLATE clause overrides the collation of an expression. It is appended to the expression it
applies to:

expr COLLATE collation

where collation is a possibly schema-qualified identifier. The COLLATE clause binds tighter than
operators; parentheses can be used when necessary.

41

Chapter 4. SQL Syntax

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column is
involved in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause,
for example:

SELECT a, b, c FROM tbl WHERE ... ORDER BY a COLLATE "C";
and overriding the collation of a function or operator call that has locale-sensitive results, for example:
SELECT » FROM tbl WHERE a > ’foo’ COLLATE "C";

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wish to affect. It doesn’t matter which argument of the operator or function call the COLLATE clause is
attached to, because the collation that is applied by the operator or function is derived by considering
all arguments, and an explicit COLLATE clause will override the collations of all other arguments.
(Attaching non-matching COLLATE clauses to more than one argument, however, is an error. For
more details see Section 23.2.) Thus, this gives the same result as the previous example:

SELECT * FROM tbl WHERE a COLLATE "C" > ’foo’;
But this is an error:
SELECT % FROM tbl WHERE (a > ’foo’) COLLATE "C";

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
data type boolean.

4.2.11. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and
the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See also Section 9.22 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max (pop) FROM cities WHERE cities.state = states.name)
FROM states;

4.2.12. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket . For example:

SELECT ARRAY[1,2,3+4];
array

42

Chapter 4. SQL Syntax

By default, the array element type is the common type of the member expressions, determined using
the same rules as for UNION or CASE constructs (see Section 10.5). You can override this by explicitly
casting the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];

{1,2,23}
(1 row)

This has the same effect as casting each expression to the array element type individually. For more
on casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors,
the key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];

{{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2]1,1[3,411];

{{1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must pro-
duce sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates
automatically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr (fl int[], £2 int[]);
INSERT INTO arr VALUES (ARRAY[[1,2],([3,411, ARRAY[[5,6],[7,811);

SELECT ARRAY[fl, f2, " {{9,10},{11,12}}"::int[]] FROM arr;
array

{{{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it’s impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer([];

43

Chapter 4. SQL Syntax

(1 row)

It is also possible to construct an array from the results of a subquery. In this form, the array construc-
tor is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE ’'bytea%’);
array

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31,2412,2413}
(1 row)

SELECT ARRAY (SELECT ARRAY[i, 1%2] FROM generate_series(1,5) AS a(i));

{{1,2},{2,4},1{3,6},{4,8},{5,10}}
(1 row)

The subquery must return a single column. If the subquery’s output column is of a non-array type,
the resulting one-dimensional array will have an element for each row in the subquery result, with an
element type matching that of the subquery’s output column. If the subquery’s output column is of an
array type, the result will be an array of the same type but one higher dimension; in this case all the
subquery rows must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using
values for its member fields. A row constructor consists of the key word ROw, a left parenthesis, zero
or more expressions (separated by commas) for the row field values, and finally a right parenthesis.
For example:

SELECT ROW(1,2.5,"this is a test’);

The key word rROW is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue. «, which will be expanded to a list of the ele-
ments of the row value, just as occurs when the . = syntax is used at the top level of a SELECT list (see
Section 8.16.5). For example, if table t has columns £1 and £2, these are the same:

SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.fl, t.f2, 42) FROM t;

Note: Before PostgreSQL 8.2, the . + syntax was not expanded in row constructors, so that writing
ROW (t.x, 42) created a two-field row whose first field was another row value. The new behavior
is usually more useful. If you need the old behavior of nested row values, write the inner row value
without . «, for instance row (t, 42).

44

Chapter 4. SQL Syntax

By default, the value created by a ROw expression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of a table, or a composite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable(fl int, f2 float, £f3 text);

CREATE FUNCTION getfl (mytable) RETURNS int AS ’SELECT $1.f1l’ LANGUAGE SQL;

—-— No cast needed since only one getfl() exists
SELECT getfl (ROW(1,2.5,"this is a test’));
getfl

1
(1 row)

CREATE TYPE myrowtype AS (fl1 int, £f2 text, £3 numeric);
CREATE FUNCTION getfl (myrowtype) RETURNS int AS ’SELECT $1.f1’ LANGUAGE SQL;

—-— Now we need a cast to indicate which function to call:
SELECT getfl (ROW(1,2.5,"this is a test’));
ERROR: function getfl (record) is not unique

SELECT getfl (ROW(1l,2.5,’this is a test’)::mytable);
getfl

getfl

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two
row values or test a row with IS NULL or IS NOT NULL, for example:

SELECT ROW(1l,2.5,’this is a test’) = ROW(1l, 3, ’'not the same’);
SELECT ROW (table.*) IS NULL FROM table; —— detect all-null rows

For more detail see Section 9.23. Row constructors can also be used in connection with subqueries,
as discussed in Section 9.22.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

45

Chapter 4. SQL Syntax
SELECT true OR somefunc();

then somefunc () would (probably) not be called at all. The same would be the case if one wrote:
SELECT somefunc () OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws
of Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.17) can be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But this is safe:

SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done
when necessary. (In this particular example, it would be better to sidestep the problem by writing y
> 1.5xx instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is
that it does not prevent early evaluation of constant subexpressions. As described in Section 36.6,
functions and operators marked IMMUTABLE can be evaluated when the query is planned rather than
when it is executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM tab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant subex-
pression, even if every row in the table has x > 0 so that the ELSE arm would never be entered at
run time.

While that particular example might seem silly, related cases that don’t obviously involve constants
can occur in queries executed within functions, since the values of function arguments and local
variables can be inserted into queries as constants for planning purposes. Within PL/pgSQL functions,
for example, using an IF-THEN-ELSE statement to protect a risky computation is much safer than just
nesting it in a CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate ex-
pression contained within it, because aggregate expressions are computed before other expressions
in a SELECT list or HAVING clause are considered. For example, the following query can cause a
division-by-zero error despite seemingly having protected against it:

SELECT CASE WHEN min (employees) > 0
THEN avg (expenses / employees)
END
FROM departments;

The min () and avg () aggregates are computed concurrently over all the input rows, so if any row
has employees equal to zero, the division-by-zero error will occur before there is any opportunity

46

Chapter 4. SQL Syntax

to test the result of min () . Instead, use a WHERE or FILTER clause to prevent problematic input rows
from reaching an aggregate function in the first place.

4.3. Calling Functions

PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order. For each notation, also consider the effect of
function argument types, documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But this is particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right to
left.

PostgreSQL also supports mixed notation, which combines positional and named notation. In this
case, positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:

CREATE FUNCTION concat_lower_or_upper (a text, b text, uppercase boolean DEFAULT false)
RETURNS text

AS
$$
SELECT CASE
WHEN $3 THEN UPPER(S1 || " 7 || $2)
ELSE LOWER(S$1 || " ' || $2)
END;
$S

LANGUAGE SQL IMMUTABLE STRICT;

Function concat_lower_or_upper has two mandatory parameters, a and b. Additionally there is
one optional parameter uppercase which defaults to false. The a and b inputs will be concatenated,
and forced to either upper or lower case depending on the uppercase parameter. The remaining
details of this function definition are not important here (see Chapter 36 for more information).

4.3.1. Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL.
An example is:

SELECT concat_lower_or_upper ('Hello’, ’'World’, true);
concat_lower_or_upper

HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since uppercase is specified as true.
Another example is:

47

Chapter 4. SQL Syntax

SELECT concat_lower_or_upper ('Hello’, ’'World’);
concat_lower_or_upper

hello world
(1 row)

Here, the uppercase parameter is omitted, so it receives its default value of false, resulting in
lower case output. In positional notation, arguments can be omitted from right to left so long as they
have defaults.

4.3.2. Using Named Notation

In named notation, each argument’s name is specified using => to separate it from the argument
expression. For example:

SELECT concat_lower_or_upper(a => ’'Hello’, b => ’'World’);
concat_lower_or_upper

hello world
(1 row)

Again, the argument uppercase was omitted so it is set to false implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat_lower_or_upper (a => "Hello’, b => ’'World’, uppercase => true);
concat_lower_or_upper

HELLO WORLD
(1 row)

SELECT concat_lower_or_upper (a => ’'Hello’, uppercase => true, b => ’'World’);
concat_lower_or_upper

HELLO WORLD

(1 row)
An older syntax based on ":=" is supported for backward compatibility:
SELECT concat_lower_or_upper (a := 'Hello’, uppercase := true, b := 'World’);

concat_lower_or_upper

HELLO WORLD
(1 row)

4.3.3. Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat_lower_or_upper ('Hello’, ’'World’, uppercase => true);
concat_lower_or_upper

48

Chapter 4. SQL Syntax

HELLO WORLD
(1 row)

In the above query, the arguments a and b are specified positionally, while uppercase is specified by
name. In this example, that adds little except documentation. With a more complex function having
numerous parameters that have default values, named or mixed notation can save a great deal of
writing and reduce chances for error.

Note: Named and mixed call notations currently cannot be used when calling an aggregate func-
tion (but they do work when an aggregate function is used as a window function).

49

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as inheritance, views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is
variable — it reflects how much data is stored at a given moment. SQL does not make any guarantees
about the order of the rows in a table. When a table is read, the rows will appear in an unspecified
order, unless sorting is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not
assign unique identifiers to rows, so it is possible to have several completely identical rows in a table.
This is a consequence of the mathematical model that underlies SQL but is usually not desirable.
Later in this chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned
to a column and assigns semantics to the data stored in the column so that it can be used for com-
putations. For instance, a column declared to be of a numerical type will not accept arbitrary text
strings, and the data stored in such a column can be used for mathematical computations. By contrast,
a column declared to be of a character string type will accept almost any kind of data but it does not
lend itself to mathematical calculations, although other operations such as string concatenation are
available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
a detailed explanation to Chapter 8. Some of the frequently used data types are integer for whole
numbers, numeric for possibly fractional numbers, text for character strings, date for dates, t ime
for time-of-day values, and t imestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

)

This creates a table named my_first_table with two columns. The first column is named
first_column and has a data type of text; the second column has the name second_column and
the type integer. The table and column names follow the identifier syntax explained in Section
4.1.1. The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your
tables and columns that convey what kind of data they store. So let’s look at a more realistic example:

CREATE TABLE products (

50

Chapter 5. Data Definition

product_no integer,
name text,
price numeric

)

(The numeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern
for the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS
variant to avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified
for some of the columns, those columns will be filled with their respective default values. A data
manipulation command can also request explicitly that a column be set to its default value, without
having to know what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
)i

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a t imestamp column to have a default of

51

Chapter 5. Data Definition

CURRENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is
generating a “serial number” for each row. In PostgreSQL this is typically done by something like:

CREATE TABLE products (
product_no integer DEFAULT nextval (' products_product_no_seq’),

)

where the nextval () function supplies successive values from a sequence object (see Section 9.16).
This arrangement is sufficiently common that there’s a special shorthand for it:

CREATE TABLE products (
product_no SERIAL,

)

The sERIAL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only
positive numbers. Another issue is that you might want to constrain column data with respect to other
columns or rows. For example, in a table containing product information, there should be only one
row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error is raised. This applies even if the value came from the default
value definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in
a certain column must satisfy a Boolean (truth-value) expression. For instance, to require positive
product prices, you could use:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0)
)i

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECK followed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

52

Chapter 5. Data Definition

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive_price CHECK (price > 0)
)i

So, to specify a named constraint, use the key word CONSTRAINT followed by an identifier followed
by the constraint definition. (If you don’t specify a constraint name in this way, the system chooses a
name for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be writ-
ten as table constraints, while the reverse is not necessarily possible, since a column constraint is
supposed to refer to only the column it is attached to. (PostgreSQL doesn’t enforce that rule, but you
should follow it if you want your table definitions to work with other database systems.) The above
example could also be written as:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)
)i

or even:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0 AND price > discounted_price)
)i

It’s a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (

53

Chapter 5. Data Definition

product_no integer,

name text,

price numeric,

CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0),

CONSTRAINT valid_discount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if any operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section can be used.

Note: PostgreSQL does not support cEECK constraints that reference table data other than the
new or updated row being checked. While a creck constraint that violates this rule may appear
to work in simple tests, it cannot guarantee that the database will not reach a state in which the
constraint condition is false (due to subsequent changes of the other row(s) involved). This would
cause a database dump and reload to fail. The reload could fail even when the complete database
state is consistent with the constraint, due to rows not being loaded in an order that will satisfy the
constraint. If possible, use UNIQUE, EXCLUDE, Or FOREIGN KEY constraints to express cross-row
and cross-table restrictions.

If what you desire is a one-time check against other rows at row insertion, rather than a
continuously-maintained consistency guarantee, a custom trigger can be used to implement
that. (This approach avoids the dump/reload problem because pg_dump does not reinstall
triggers until after reloading data, so that the check will not be enforced during a dump/reload.)

Note: PostgreSQL assumes that cuEck constraints’ conditions are immutable, that is, they will
always give the same result for the same input row. This assumption is what justifies examining
CHECK constraints only when rows are inserted or updated, and not at other times. (The warning
above about not referencing other table data is really a special case of this restriction.)

An example of a common way to break this assumption is to reference a user-defined function in
a CHECK expression, and then change the behavior of that function. PostgreSQL does not disallow
that, but it will not notice if there are rows in the table that now violate the caeck constraint. That
would cause a subsequent database dump and reload to fail. The recommended way to handle
such a change is to drop the constraint (using ALTER TABLE), adjust the function definition, and
re-add the constraint, thereby rechecking it against all table rows.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (

)

product_no integer NOT NULL,
name text NOT NULL,
price numeric

54

Chapter 5. Data Definition

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (column_name IS NOT NULL), butin PostgreSQL
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

product_no integer NOT NULL,

name text NOT NULL,

price numeric NOT NULL CHECK (price > 0)
)i

The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply selects the default behavior that the
column might be null. The NULL constraint is not present in the SQL standard and should not be used
in portable applications. (It was only added to PostgreSQL to be compatible with some other database
systems.) Some users, however, like it because it makes it easy to toggle the constraint in a script file.
For example, you could start with:

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

)i

and then insert the NOT key word where desired.

Tip: In most database designs the majority of columns should be marked not null.

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column, or a group of columns, is unique among
all the rows in the table. The syntax is:

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric

)
when written as a column constraint, and:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)i

when written as a table constraint.

55

Chapter 5. Data Definition

To define a unique constraint for a group of columns, write it as a table constraint with the column
names separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)
)i

This specifies that the combination of values in the indicated columns is unique across the whole
table, though any one of the columns need not be (and ordinarily isn’t) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

)i

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written
as a unique constraint, but it is possible to enforce such a restriction by creating a unique partial index.

In general, a unique constraint is violated if there is more than one row in the table where the values of
all of the columns included in the constraint are equal. However, two null values are never considered
equal in this comparison. That means even in the presence of a unique constraint it is possible to
store duplicate rows that contain a null value in at least one of the constrained columns. This behavior
conforms to the SQL standard, but we have heard that other SQL databases might not follow this rule.
So be careful when developing applications that are intended to be portable.

5.3.4. Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique
identifier for rows in the table. This requires that the values be both unique and not null. So, the
following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (

56

Chapter 5. Data Definition

a integer,

b integer,

c integer,

PRIMARY KEY (a, c)
)i

Adding a primary key will automatically create a unique B-tree index on the column or group of
columns listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique and not-null con-
straints, which are functionally almost the same thing, but only one can be identified as the primary
key.) Relational database theory dictates that every table must have a primary key. This rule is not
enforced by PostgreSQL, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a
GUI application that allows modifying row values probably needs to know the primary key of a table
to be able to identify rows uniquely. There are also various ways in which the database system makes
use of a primary key if one has been declared; for example, the primary key defines the default target
column(s) for foreign keys referencing its table.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

Let’s also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),
quantity integer

)i
Now it is impossible to create orders with non-NULL product_no entries that do not appear in the
products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,

57

Chapter 5. Data Definition

quantity integer
)i

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be
written in table constraint form. Here is a contrived syntax example:

CREATE TABLE tl (

a integer PRIMARY KEY,

b integer,

c integer,

FOREIGN KEY (b, c) REFERENCES other_table (cl, c2)
)i

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

You can assign your own name for a foreign key constraint, in the usual way.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have a few options:

+ Disallow deleting a referenced product
« Delete the orders as well
+ Something else?

58

Chapter 5. Data Definition

To illustrate this, let’s implement the following policy on the many-to-many relationship example
above: when someone wants to remove a product that is still referenced by an order (via
order_items), we disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)i

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of
a referenced row. NO ACTION means that if any referencing rows still exist when the constraint is
checked, an error is raised; this is the default behavior if you do not specify anything. (The essential
difference between these two choices is that NO ACTION allows the check to be deferred until later
in the transaction, whereas RESTRICT does not.) CASCADE specifies that when a referenced row is
deleted, row(s) referencing it should be automatically deleted as well. There are two other options:
SET NULL and SET DEFAULT. These cause the referencing column(s) in the referencing row(s) to be
set to nulls or their default values, respectively, when the referenced row is deleted. Note that these
do not excuse you from observing any constraints. For example, if an action specifies SET DEFAULT
but the default value would not satisfy the foreign key constraint, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same. In this case, CASCADE means that the updated
values of the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing
columns are null. If MATCH FULL is added to the foreign key declaration, a referencing row escapes
satisfying the constraint only if all its referencing columns are null (so a mix of null and non-null
values is guaranteed to fail a MATCH FULL constraint). If you don’t want referencing rows to be able
to avoid satisfying the foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint.
This means that the referenced columns always have an index (the one underlying the primary key
or unique constraint); so checks on whether a referencing row has a match will be efficient. Since
a DELETE of a row from the referenced table or an UPDATE of a referenced column will require a
scan of the referencing table for rows matching the old value, it is often a good idea to index the
referencing columns too. Because this is not always needed, and there are many choices available on
how to index, declaration of a foreign key constraint does not automatically create an index on the
referencing columns.

More information about updating and deleting data is in Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

59

Chapter 5. Data Definition

5.3.6. Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expres-
sions using the specified operators, at least one of these operator comparisons will return false or null.
The syntax is:

CREATE TABLE circles (

c circle,

EXCLUDE USING gist (c WITH &&)
)i

See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the con-
straint declaration.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate
from whether the name is a key word or not; quoting a name will not allow you to escape these
restrictions.) You do not really need to be concerned about these columns; just know they exist.

oid
The object identifier (object ID) of a row. This column is only present if the table was created
using WITH OIDs, or if the default_with_oids configuration variable was set at the time. This

column is of type oid (same name as the column); see Section 8.18 for more information about
the type.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that
select from inheritance hierarchies (see Section 5.9), since without it, it’s difficult to tell which
individual table a row came from. The tableoid can be joined against the oid column of
pg_class to obtain the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is
an individual state of a row; each update of a row creates a new row version for the same logical
row.)

cmin
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version. That usually indicates that the
deleting transaction hasn’t committed yet, or that an attempted deletion was rolled back.

cmax

The command identifier within the deleting transaction, or zero.

60

Chapter 5. Data Definition

ctid

The physical location of the row version within its table. Note that although the ctid can be
used to locate the row version very quickly, a row’s ctid will change if it is updated or moved
by vacuuM FULL. Therefore ctid is useless as a long-term row identifier. The OID, or even
better a user-defined serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs
are unique, unless you take steps to ensure that this is the case. If you need to identify the rows in
a table, using a sequence generator is strongly recommended. However, OIDs can be used as well,
provided that a few additional precautions are taken:

« A unique constraint should be created on the OID column of each table for which the OID will
be used to identify rows. When such a unique constraint (or unique index) exists, the system takes
care not to generate an OID matching an already-existing row. (Of course, this is only possible if
the table contains fewer than 2* (4 billion) rows, and in practice the table size had better be much
less than that, or performance might suffer.)

« OIDs should never be assumed to be unique across tables; use the combination of tableoid and
row OID if you need a database-wide identifier.

« Of course, the tables in question must be created WITH OIDS. As of PostgreSQL 8.1, WITHOUT
01DS is the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction
IDs to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter
24 for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 2*? (4 billion) SQL com-
mands within a single transaction. In practice this limit is not a problem — note that the limit is on
the number of SQL commands, not the number of rows processed. Also, only commands that actually
modify the database contents will consume a command identifier.

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the appli-
cation change, you can drop the table and create it again. But this is not a convenient option if the
table is already filled with data, or if the table is referenced by other database objects (for instance a
foreign key constraint). Therefore PostgreSQL provides a family of commands to make modifications
to existing tables. Note that this is conceptually distinct from altering the data contained in the table:
here we are interested in altering the definition, or structure, of the table.

You can:

« Add columns

« Remove columns

« Add constraints

« Remove constraints

+ Change default values

+ Change column data types
« Rename columns

61

Chapter 5. Data Definition

« Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

5.5.1. Adding a Column

To add a column, use a command like:
ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don’t specify a
DEFAULT clause).

You can also define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMN description text CHECK (description <> ");

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you’ve filled in the new column correctly.

Tip: Adding a column with a default requires updating each row of the table (to store the new
column value). However, if no default is specified, PostgreSQL is able to avoid the physical update.
So if you intend to fill the column with mostly nondefault values, it's best to add the column with
no default, insert the correct values using uppaTE, and then add any desired default as described
below.

5.5.2. Removing a Column

To remove a column, use a command like:

ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will
not silently drop that constraint. You can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

5.5.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ");

ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);

ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

62

Chapter 5. Data Definition

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

5.5.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that’s easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command
is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name like $2, don’t forget that you’ll need to double-
quote it to make it a valid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something
else depends on. An example is that a foreign key constraint depends on a unique or primary key
constraint on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint
use:

ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.5.5. Changing a Column’s Default Value
To set a new default for a column, use a command like:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn’t affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:

ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop
a default where one hadn’t been defined, because the default is implicitly the null value.

5.5.6. Changing a Column’s Data Type

To convert a column to a different data type, use a command like:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

63

Chapter 5. Data Definition

This will succeed only if each existing entry in the column can be converted to the new type by an
implicit cast. If a more complex conversion is needed, you can add a USING clause that specifies how
to compute the new values from the old.

PostgreSQL will attempt to convert the column’s default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions might fail, or might produce surprising
results. It’s often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

5.5.7. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.5.8. Renaming a Table

To rename a table:

ALTER TABLE products RENAME TO items;

5.6. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To allow other roles to use it, privileges must be granted.

There are different kinds of privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE,
REFERENCES, TRIGGER, CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges
applicable to a particular object vary depending on the object’s type (table, function, etc). For
complete information on the different types of privileges supported by PostgreSQL, refer to the
GRANT reference page. The following sections and chapters will also show you how those
privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the
object, e.g., ALTER TABLE. Superusers can always do this; ordinary roles can only do it if they are
both the current owner of the object (or a member of the owning role) and a member of the new
owning role.

To assign privileges, the GRANT command is used. For example, if joe is an existing role, and
accounts is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

64

Chapter 5. Data Definition

The special “role” name PUBLIC can be used to grant a privilege to every role on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 21.

To revoke a privilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to
revoke their own ordinary privileges, for example to make a table read-only for themselves as well as
others.

Ordinarily, only the object’s owner (or a superuser) can grant or revoke privileges on an object. How-
ever, it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant
it in turn to others. If the grant option is subsequently revoked then all who received the privilege
from that recipient (directly or through a chain of grants) will lose the privilege. For details see the
GRANT and REVOKE reference pages.

5.7. Row Security Policies

In addition to the SQL-standard privilege system available through GRANT, tables can have row
security policies that restrict, on a per-user basis, which rows can be returned by normal queries or
inserted, updated, or deleted by data modification commands. This feature is also known as Row-
Level Security. By default, tables do not have any policies, so that if a user has access privileges to a
table according to the SQL privilege system, all rows within it are equally available for querying or
updating.

When row security is enabled on a table (with ALTER TABLE ... ENABLE ROW LEVEL SECU-
RITY), all normal access to the table for selecting rows or modifying rows must be allowed by a
row security policy. (However, the table’s owner is typically not subject to row security policies.) If
no policy exists for the table, a default-deny policy is used, meaning that no rows are visible or can
be modified. Operations that apply to the whole table, such as TRUNCATE and REFERENCES, are not
subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified to
apply to ALL commands, or to SELECT, INSERT, UPDATE, or DELETE. Multiple roles can be assigned
to a given policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that
returns a Boolean result. This expression will be evaluated for each row prior to any conditions or
functions coming from the user’s query. (The only exceptions to this rule are leakproof functions,
which are guaranteed to not leak information; the optimizer may choose to apply such functions ahead
of the row-security check.) Rows for which the expression does not return t rue will not be processed.
Separate expressions may be specified to provide independent control over the rows which are visible
and the rows which are allowed to be modified. Policy expressions are run as part of the query and
with the privileges of the user running the query, although security-definer functions can be used to
access data not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when
accessing a table. Table owners normally bypass row security as well, though a table owner can
choose to be subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to a table, is always the privilege of
the table owner only.

65

Chapter 5. Data Definition

Policies are created using the CREATE POLICY command, altered using the ALTER POLICY com-
mand, and dropped using the DROP POLICY command. To enable and disable row security for a
given table, use the ALTER TABLE command.

Each policy has a name and multiple policies can be defined for a table. As policies are table-specific,
each policy for a table must have a unique name. Different tables may have policies with the same
name.

When multiple policies apply to a given query, they are combined using OR, so that a row is accessible
if any policy allows it. This is similar to the rule that a given role has the privileges of all roles that
they are a member of.

As a simple example, here is how to create a policy on the account relation to allow only members
of the managers role to access rows, and only rows of their accounts:

CREATE TABLE accounts (manager text, company text, contact_email text);
ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE POLICY account_managers ON accounts TO managers
USING (manager = current_user);

The policy above implicitly provides a WITH CHECK clause identical to its USING clause, so that the
constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE, or
DELETE existing rows belonging to a different manager) and to rows modified by a command (so
rows belonging to a different manager cannot be created via INSERT or UPDATE).

If no role is specified, or the special user name PUBLIC is used, then the policy applies to all users on
the system. To allow all users to access only their own row in a users table, a simple policy can be
used:

CREATE POLICY user_policy ON users
USING (user_name = current_user);

This works similarly to the previous example.

To use a different policy for rows that are being added to the table compared to those rows that are
visible, multiple policies can be combined. This pair of policies would allow all users to view all rows
in the users table, but only modify their own:

CREATE POLICY user_sel_policy ON users
FOR SELECT
USING (true);

CREATE POLICY user_mod_policy ON users
USING (user_name = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all
rows can be selected. In other command types, only the second policy applies, so that the effects are
the same as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does not
remove any policies that are defined on the table; they are simply ignored. Then all rows in the table
are visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table
passwd emulates a Unix password file:

—-— Simple passwd-file based example
CREATE TABLE passwd (

66

Chapter 5. Data Definition

user_name text UNIQUE NOT NULL,
pwhash text,
uid int PRIMARY KEY,
gid int NOT NULL,
real_name text NOT NULL,
home_phone text,
extra_info text,
home_dir text NOT NULL,
shell text NOT NULL
)i
CREATE ROLE admin; -- Administrator
CREATE ROLE bob; —-— Normal user
CREATE ROLE alice; —-- Normal user

—-— Populate the table

INSERT INTO passwd VALUES
("admin’,’xxx’,0,0,’Admin’,’111-222-3333’ ,null,’ /root’,’ /bin/dash’);

INSERT INTO passwd VALUES
("bob’,"xxx",1,1,"Bob’,"123-456-7890’ ,null,’ /home/bob’,’ /bin/zsh’);

INSERT INTO passwd VALUES
("alice’,’xxx’,2,1,"Alice’,’098-765-4321" ,null,’ /home/alice’,’ /bin/zsh’

—-— Be sure to enable row level security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

—-— Create policies
—-— Administrator can see all rows and add any rows
CREATE POLICY admin_all ON passwd TO admin USING (true) WITH CHECK (true)
—-— Normal users can view all rows
CREATE POLICY all_view ON passwd FOR SELECT USING (true);
—-— Normal users can update their own records, but
—— limit which shells a normal user is allowed to set
CREATE POLICY user_mod ON passwd FOR UPDATE
USING (current_user = user_name)
WITH CHECK (
current_user = user_name AND
shell IN (’/bin/bash’,’/bin/sh’,’/bin/dash’,’/bin/zsh’,’ /bin/tcsh’)
)i

—— Allow admin all normal rights

GRANT SELECT, INSERT, UPDATE, DELETE ON passwd TO admin;
—-— Users only get select access on public columns

GRANT SELECT

)i

’

(user_name, uid, gid, real_name, home_phone, extra_info, home_dir, shell)

ON passwd TO public;

—-— Allow users to update certain columns

GRANT UPDATE
(pwhash, real_name, home_phone, extra_info, shell)
ON passwd TO public;

As with any security settings, it’s important to test and ensure that the system is behaving as expected.

Using the example above, this demonstrates that the permission system is working properly.

—— admin can view all rows and fields
postgres=> set role admin;
SET

67

Chapter 5. Data Definition

postgres=> table passwd;

user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir |
——————————— i e e il ettt
admin | xxx | 0 | 0 | Admin | 111-222-3333 | | /root |
bob | xxx | 1 1 | Bob | 123-456-7890 | | /home/bob |
alice | xxx | 2 | 1 | Alice | 098-765-4321 | | /home/alice |
(3 rows)

—-— Test what Alice is able to do

postgres=> set role alice;

SET

postgres=> table passwd;

ERROR: permission denied for relation passwd

postgres=> select user_name,real_name,home_phone,extra_info,home_dir,shell from passwd;

user_name | real_name | home_phone | extra_info | home_dir | shell
77777777777 Bt e st
admin | Admin | 111-222-3333 | | /root | /bin/dash
bob | Bob | 123-456-7890 | | /home/bob | /bin/zsh
alice | Alice | 098-765-4321 | | /home/alice | /bin/zsh
(3 rows)
postgres=> update passwd set user_name = ' joe’;
ERROR: permission denied for relation passwd
—-— Alice is allowed to change her own real_ name, but no others
postgres=> update passwd set real_name = ’'Alice Doe’;
UPDATE 1
postgres=> update passwd set real_name = ’'John Doe’ where user_name = ’'admin’;
UPDATE O

postgres=> update passwd set shell = ’/bin/xx’;

ERROR: new row violates WITH CHECK OPTION for "passwd"

postgres=> delete from passwd;

ERROR: permission denied for relation passwd

postgres=> insert into passwd (user_name) values (’'xxx’);

ERROR: permission denied for relation passwd

—— Alice can change her own password; RLS silently prevents updating other rows
postgres=> update passwd set pwhash = "abc’;

UPDATE 1

Referential integrity checks, such as unique or primary key constraints and foreign key references,
always bypass row security to ensure that data integrity is maintained. Care must be taken when
developing schemas and row level policies to avoid “covert channel” leaks of information through
such referential integrity checks.

In some contexts it is important to be sure that row security is not being applied. For example, when
taking a backup, it could be disastrous if row security silently caused some rows to be omitted from
the backup. In such a situation, you can set the row_security configuration parameter to of £. This
does not in itself bypass row security; what it does is throw an error if any query’s results would get
filtered by a policy. The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be ac-
cessed or updated. This is the simplest and best-performing case; when possible, it’s best to design
row security applications to work this way. If it is necessary to consult other rows or other tables
to make a policy decision, that can be accomplished using sub-SELECTS, or functions that contain
SELECTS, in the policy expressions. Be aware however that such accesses can create race conditions
that could allow information leakage if care is not taken. As an example, consider the following table
design:

68

Chapter 5. Data Definition
—— definition of privilege groups
CREATE TABLE groups (group_id int PRIMARY KEY,

group_name text NOT NULL);

INSERT INTO groups VALUES

(1, "low"),
(2, "medium’),
(5, "high’);
GRANT ALL ON groups TO alice; -- alice is the administrator

GRANT SELECT ON groups TO public;

—— definition of users’ privilege levels
CREATE TABLE users (user_name text PRIMARY KEY,
group_id int NOT NULL REFERENCES groups) ;

INSERT INTO users VALUES
("alice’, 5),
("bob’, 2),
("mallory’, 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

—-— table holding the information to be protected
CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups) ;

INSERT INTO information VALUES
("barely secret’, 1),
("slightly secret’, 2),
("very secret’, 5);

ALTER TABLE information ENABLE ROW LEVEL SECURITY;

-— a row should be visible to/updatable by users whose security group_id is
—-— greater than or equal to the row’s group_id
CREATE POLICY fp_s ON information FOR SELECT
USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));
CREATE POLICY fp_u ON information FOR UPDATE
USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));

—-— we rely only on RLS to protect the information table
GRANT ALL ON information TO public;

Now suppose that a11ice wishes to change the “slightly secret” information, but decides thatmallory
should not be trusted with the new content of that row, so she does:

BEGIN;

UPDATE users SET group_id = 1 WHERE user_name = 'mallory’;

UPDATE information SET info = ’secret from mallory’ WHERE group_id = 2;
COMMIT;

That looks safe; there is no window wherein ma11ory should be able to see the “secret from mallory”
string. However, there is a race condition here. If mallory is concurrently doing, say,

SELECT x FROM information WHERE group_id = 2 FOR UPDATE;

69

Chapter 5. Data Definition

and her transaction is in READ COMMITTED mode, it is possible for her to see “secret from mallory”.
That happens if her transaction reaches the information row just after alice’s does. It blocks
waiting for alice’s transaction to commit, then fetches the updated row contents thanks to the FOR
UPDATE clause. However, it does not fetch an updated row for the implicit SELECT from users,
because that sub-SELECT did not have FOR UPDATE; instead the users row is read with the snapshot
taken at the start of the query. Therefore, the policy expression tests the old value of mallory’s
privilege level and allows her to see the updated row.

There are several ways around this problem. One simple answer is to use SELECT ... FOR SHARE
in sub-SELECTS in row security policies. However, that requires granting UPDATE privilege on the
referenced table (here users) to the affected users, which might be undesirable. (But another row
security policy could be applied to prevent them from actually exercising that privilege; or the sub-
SELECT could be embedded into a security definer function.) Also, heavy concurrent use of row
share locks on the referenced table could pose a performance problem, especially if updates of it are
frequent. Another solution, practical if updates of the referenced table are infrequent, is to take an
exclusive lock on the referenced table when updating it, so that no concurrent transactions could be
examining old row values. Or one could just wait for all concurrent transactions to end after com-
mitting an update of the referenced table and before making changes that rely on the new security
situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.8. Schemas

A PostgreSQL database cluster contains one or more named databases. Roles and a few other object
types are shared across the entire cluster. A client connection to the server can only access data in a
single database, the one specified in the connection request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the
cluster. Sharing of role names means that there cannot be different roles named, say, joe in two
databases in the same cluster; but the system can be configured to allow joe access to only
some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schemal and myschema can
contain tables named mytable. Unlike databases, schemas are not rigidly separated: a user can access
objects in any of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:

+ To allow many users to use one database without interfering with each other.
+ To organize database objects into logical groups to make them more manageable.

« Third-party applications can be put into separate schemas so they do not collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

70

Chapter 5. Data Definition

5.8.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice.
For example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and
table name separated by a dot:

schema.table

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters. (For brevity we will speak of tables only,
but the same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax

database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you
write a database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (

)

To drop a schema if it’s empty (all objects in it have been dropped), use:
DROP SCHEMA myschema;

To drop a schema including all contained objects, use:

DROP SCHEMA myschema CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to
restrict the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schema_name AUTHORIZATION user_name;

You can even omit the schema name, in which case the schema name will be the same as the user
name. See Section 5.8.6 for how this can be useful.

Schema names beginning with pg__ are reserved for system purposes and cannot be created by users.

71

Chapter 5. Data Definition

5.8.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default such
tables (and other objects) are automatically put into a schema named “public”. Every new database
contains such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:

CREATE TABLE public.products (...);

5.8.3. The Schema Search Path

Qualified names are tedious to write, and it’s often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of
just the table name. The system determines which table is meant by following a search path, which is
a list of schemas to look in. The first matching table in the search path is taken to be the one wanted.
If there is no match in the search path, an error is reported, even if matching table names exist in other
schemas in the database.

The ability to create like-named objects in different schemas complicates writing a query that refer-
ences precisely the same objects every time. It also opens up the potential for users to change the
behavior of other users’ queries, maliciously or accidentally. Due to the prevalence of unqualified
names in queries and their use in PostgreSQL internals, adding a schema to search_path effec-
tively trusts all users having CREATE privilege on that schema. When you run an ordinary query, a
malicious user able to create objects in a schema of your search path can take control and execute
arbitrary SQL functions as though you executed them.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be created if the CREATE TABLE
command does not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;
In the default setup this returns:

search_path

"Suser", public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:

72

Chapter 5. Data Definition

SET search_path TO myschema,public;

(We omit the $user here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.
We could also have written:

SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.25 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR (schema.operator)
This is needed to avoid syntactic ambiguity. An example is:
SELECT 3 OPERATOR (pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

5.8.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of
the schema must grant the USAGE privilege on the schema. To allow users to make use of the objects
in the schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow that, the CREATE
privilege on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE
privileges on the schema public. This allows all users that are able to connect to a given database to
create objects in its public schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.8.5. The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_catalog schema,
which contains the system tables and all the built-in data types, functions, and operators. pg_catalog
is always effectively part of the search path. If it is not named explicitly in the path then it is implicitly
searched before searching the path’s schemas. This ensures that built-in names will always be findable.

73

Chapter 5. Data Definition

However, you can explicitly place pg_catalog at the end of your search path if you prefer to have
user-defined names override built-in names.

Since system table names begin with pg_, it is best to avoid such names to ensure that you won’t
suffer a conflict if some future version defines a system table named the same as your table. (With the
default search path, an unqualified reference to your table name would then be resolved as the system
table instead.) System tables will continue to follow the convention of having names beginning with
pg_, so that they will not conflict with unqualified user-table names so long as users avoid the pg_
prefix.

5.8.6. Usage Patterns

Schemas can be used to organize your data in many ways. A secure schema usage pattern pre-
vents untrusted users from changing the behavior of other users’ queries. When a database does
not use a secure schema usage pattern, users wishing to securely query that database would take
protective action at the beginning of each session. Specifically, they would begin each session by set-
ting search_path to the empty string or otherwise removing non-superuser-writable schemas from
search_path. There are a few usage patterns easily supported by the default configuration:

+ Constrain ordinary users to user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA public FROM PUBLIC, and create a schema for each user with the same name as that
user. Recall that the default search path starts with $user, which resolves to the user name. There-
fore, if each user has a separate schema, they access their own schemas by default. After adopting
this pattern in a database where untrusted users had already logged in, consider auditing the public
schema for objects named like objects in schema pg_catalog. This pattern is a secure schema
usage pattern unless an untrusted user is the database owner or holds the CREATEROLE privilege, in
which case no secure schema usage pattern exists.

« Remove the public schema from the default search path, by modifying postgresgl.conf or by
issuing ALTER ROLE ALL SET search_path = "S$user". Everyone retains the ability to cre-
ate objects in the public schema, but only qualified names will choose those objects. While qualified
table references are fine, calls to functions in the public schema will be unsafe or unreliable. If you
create functions or extensions in the public schema, use the first pattern instead. Otherwise, like the
first pattern, this is secure unless an untrusted user is the database owner or holds the CREATEROLE
privilege.

« Keep the default. All users access the public schema implicitly. This simulates the situation where
schemas are not available at all, giving a smooth transition from the non-schema-aware world.
However, this is never a secure pattern. It is acceptable only when the database has a single user or
a few mutually-trusting users.

For any pattern, to install shared applications (tables to be used by everyone, additional functions pro-
vided by third parties, etc.), put them into separate schemas. Remember to grant appropriate privileges
to allow the other users to access them. Users can then refer to these additional objects by qualifying
the names with a schema name, or they can put the additional schemas into their search path, as they
choose.

5.8.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does

74

Chapter 5. Data Definition

not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basic schema support specified in the standard. Therefore, many
users consider qualified names to really consist of user_name. table name. This is how PostgreSQL
will effectively behave if you create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to
the standard, you should not use the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.9. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers.
(SQL:1999 and later define a type inheritance feature, which differs in many respects from the
features described here.)

Let’s start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular
state. This can be done by creating two tables, one for state capitals and one for cities that are not
capitals. However, what happens when we want to ask for data about a city, regardless of whether it
is a capital or not? The inheritance feature can help to resolve this problem. We define the capitals
table so that it inherits from cities:

CREATE TABLE cities (

name text,
population float,
elevation int -— in feet

)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals
also have an extra column, state, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT name, elevation
FROM cities
WHERE elevation > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | elevation
___________ B,
Las Vegas | 2174
Mariposa | 1953
Madison | 845

75

Chapter 5. Data Definition

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an elevation over 500 feet:

SELECT name, elevation
FROM ONLY cities
WHERE elevation > 500;

name | elevation
,,,,,,,,,,, e
Las Vegas | 2174
Mariposa | 1953

Here the oNLY keyword indicates that the query should apply only to cities, and not any tables
below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing » to explicitly specify that descendant tables are
included:

SELECT name, elevation
FROM citiesx
WHERE elevation > 500;

Writing * is not necessary, since this behavior is the default (unless you have changed the setting
of the sql_inheritance configuration option). However writing « might be useful to emphasize that
additional tables will be searched.

In some cases you might wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.elevation
FROM cities c
WHERE c.elevation > 500;

which returns:

tableoid | name | elevation

__________ I
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join
with pg_class you can see the actual table names:

SELECT p.relname, c.name, c.elevation
FROM cities ¢, pg_class p
WHERE c.elevation > 500 AND c.tableoid = p.oid;

which returns:

relname | name | elevation
,,,,,,,,,, gy

cities | Las Vegas | 2174

cities | Mariposa | 1953

76

Chapter 5. Data Definition

capitals | Madison | 845

Another way to get the same effect is to use the regclass pseudo-type, which will print the table
OID symbolically:

SELECT c.tableoid::regclass, c.name, c.elevation
FROM cities c
WHERE c.elevation > 500;

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in
the inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, elevation, state)
VALUES (’Albany’, NULL, NULL, ’NY’);

We might hope that the data would somehow be routed to the capitals table, but this does not
happen: INSERT always inserts into exactly the table specified. In some cases it is possible to redirect
the insertion using a rule (see Chapter 39). However that does not help for the above case because the
cities table does not contain the column state, and so the command will be rejected before the
rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its
children, unless explicitly specified otherwise with NO INHERIT clauses. Other types of constraints
(unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns
defined by the parent tables. Any columns declared in the child table’s definition are added to these.
If the same column name appears in multiple parent tables, or in both a parent table and the child’s
definition, then these columns are “merged” so that there is only one such column in the child table.
To be merged, columns must have the same data types, else an error is raised. Inheritable check
constraints and not-null constraints are merged in a similar fashion. Thus, for example, a merged
column will be marked not-null if any one of the column definitions it came from is marked not-null.
Check constraints are merged if they have the same name, and the merge will fail if their conditions
are different.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible
way can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do
this the new child table must already include columns with the same names and types as the columns
of the parent. It must also include check constraints with the same names and check expressions as
those of the parent. Similarly an inheritance link can be removed from a child using the NO INHERIT
variant of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful
when the inheritance relationship is being used for table partitioning (see Section 5.10).

One convenient way to create a compatible table that will later be made a new child is to use the
LIKE clause in CREATE TABLE. This creates a new table with the same columns as the source table. If
there are any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to
LIKE should be specified, as the new child must have constraints matching the parent to be considered
compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you
wish to remove a table and all of its descendants, one easy way is to drop the parent table with the
CASCADE option (see Section 5.13).

77

Chapter 5. Data Definition

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging
and rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, grant-
ing UPDATE permission on the cities table implies permission to update rows in the capitals table
as well, when they are accessed through cities. This preserves the appearance that the data is (also)
in the parent table. But the capitals table could not be updated directly without an additional grant.
Two exceptions to this rule are TRUNCATE and LOCK TABLE, where permissions on the child tables
are always checked, whether they are processed directly or recursively via those commands performed
on the parent table.

In a similar way, the parent table’s row security policies (see Section 5.7) are applied to rows coming
from child tables during an inherited query. A child table’s policies, if any, are applied only when it
is the table explicitly named in the query; and in that case, any policies attached to its parent(s) are
ignored.

Foreign tables (see Section 5.11) can also be part of inheritance hierarchies, either as parent or child
tables, just as regular tables can be. If a foreign table is part of an inheritance hierarchy then any
operations not supported by the foreign table are not supported on the whole hierarchy either.

5.9.1. Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are
used for data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE,
most variants of ALTER TABLE, but not INSERT or ALTER TABLE ... RENAME) typically default
to including child tables and support the ONLY notation to exclude them. Commands that do database
maintenance and tuning (e.g., REINDEX, VACUUM) typically only work on individual, physical tables
and do not support recursing over inheritance hierarchies. The respective behavior of each individual
command is documented in its reference page (Reference I, SOL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and for-
eign key constraints only apply to single tables, not to their inheritance children. This is true on both
the referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above ex-
ample:

« If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals
table from having rows with names duplicating rows in cities. And those duplicate rows would
by default show up in queries from cities. In fact, by default capitals would have no unique
constraint at all, and so could contain multiple rows with the same name. You could add a unique
constraint to capitals, but this would not prevent duplication compared to cities.

« Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint
would not automatically propagate to capitals. In this case you could work around it by manually
adding the same REFERENCES constraint to capitals.

+ Specifying that another table’s column REFERENCES cities (name) would allow the other table
to contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable
care is needed in deciding whether inheritance is useful for your application.

78

Chapter 5. Data Definition

5.10. Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement par-
titioning as part of your database design.

5.10.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partition-
ing can provide several benefits:

» Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions. The
partitioning substitutes for leading columns of indexes, reducing index size and making it more
likely that the heavily-used parts of the indexes fit in memory.

« When queries or updates access a large percentage of a single partition, performance can be im-
proved by taking advantage of sequential scan of that partition instead of using an index and random
access reads scattered across the whole table.

+ Bulk loads and deletes can be accomplished by adding or removing partitions, if that requirement
is planned into the partitioning design. ALTER TABLE NO INHERIT and DROP TABLE are both far
faster than a bulk operation. These commands also entirely avoid the vAcUUM overhead caused by
a bulk DELETE.

« Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of
thumb is that the size of the table should exceed the physical memory of the database server.

Currently, PostgreSQL supports partitioning via table inheritance. Each partition must be created as a
child table of a single parent table. The parent table itself is normally empty; it exists just to represent
the entire data set. You should be familiar with inheritance (see Section 5.9) before attempting to set
up partitioning.

The following forms of partitioning can be implemented in PostgreSQL.:

Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example one might partition by
date ranges, or by ranges of identifiers for particular business objects.

List Partitioning

The table is partitioned by explicitly listing which key values appear in each partition.

5.10.2. Implementing Partitioning

To set up a partitioned table, do the following:

1. Create the “master” table, from which all of the partitions will inherit.

79

Chapter 5. Data Definition

This table will contain no data. Do not define any check constraints on this table, unless you
intend them to be applied equally to all partitions. There is no point in defining any indexes or
unique constraints on it, either.

2. Create several “child” tables that each inherit from the master table. Normally, these tables will
not add any columns to the set inherited from the master.

We will refer to the child tables as partitions, though they are in every way normal PostgreSQL
tables (or, possibly, foreign tables).
3. Add table constraints to the partition tables to define the allowed key values in each partition.

Typical examples would be:

CHECK (x = 1)

CHECK (county IN (’Oxfordshire’, ’Buckinghamshire’, ’'Warwickshire’))
CHECK (outletID >= 100 AND outletID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake is to set up range constraints like:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)
This is wrong since it is not clear which partition the key value 200 belongs in.

Note that there is no difference in syntax between range and list partitioning; those terms are
descriptive only.

4. For each partition, create an index on the key column(s), as well as any other indexes you might
want. (The key index is not strictly necessary, but in most scenarios it is helpful. If you intend
the key values to be unique then you should always create a unique or primary-key constraint for
each partition.)

5. Optionally, define a trigger or rule to redirect data inserted into the master table to the appropriate
partition.

6. Ensure that the constraint_exclusion configuration parameter is not disabled in
postgresqgl.conf. If it is, queries will not be optimized as desired.

For example, suppose we are constructing a database for a large ice cream company. The company
measures peak temperatures every day as well as ice cream sales in each region. Conceptually, we
want a table like:

CREATE TABLE measurement (

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

)

We know that most queries will access just the last week’s, month’s or quarter’s data, since the main
use of this table will be to prepare online reports for management. To reduce the amount of old data
that needs to be stored, we decide to only keep the most recent 3 years worth of data. At the beginning
of each month we will remove the oldest month’s data.

In this situation we can use partitioning to help us meet all of our different requirements for the
measurements table. Following the steps outlined above, partitioning can be set up as follows:

1. The master table is the measurement table, declared exactly as above.
2. Next we create one partition for each active month:

CREATE TABLE measurement_y2006m02 () INHERITS (measurement);

80

Chapter 5. Data Definition

CREATE TABLE measurement_y2006m03 () INHERITS (measurement);
CREATE TABLE measurement_y2007mll () INHERITS (measurement);
CREATE TABLE measurement_y2007ml2 () INHERITS (measurement);
CREATE TABLE measurement_y2008m0Ol1 () INHERITS (measurement);

Each of the partitions are complete tables in their own right, but they inherit their definitions from
the measurement table.

This solves one of our problems: deleting old data. Each month, all we will need to do is perform
a DROP TABLE on the oldest child table and create a new child table for the new month’s data.

. We must provide non-overlapping table constraints. Rather than just creating the partition tables
as above, the table creation script should really be:

CREATE TABLE measurement_y2006m02 (

CHECK (logdate >= DATE ’2006-02-01" AND logdate < DATE ’2006-03-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2006m03 (

CHECK (logdate >= DATE ’'2006-03-01" AND logdate < DATE ’'2006-04-01")
) INHERITS (measurement);

CREATE TABLE measurement_y2007mll (

CHECK (logdate >= DATE ’'2007-11-01’ AND logdate < DATE ’2007-12-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2007ml2 (

CHECK (logdate >= DATE ’'2007-12-01" AND logdate < DATE '2008-01-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2008m01 (

CHECK (logdate >= DATE ’2008-01-01" AND logdate < DATE ’2008-02-01")
) INHERITS (measurement);
. We probably need indexes on the key columns too:

CREATE INDEX measurement_y2006m02_logdate ON measurement_y2006m02 (logdate);
CREATE INDEX measurement_y2006m03_logdate ON measurement_y2006m03 (logdate);

CREATE INDEX measurement_y2007mll_logdate ON measurement_y2007mll (logdate);
CREATE INDEX measurement_y2007ml2_logdate ON measurement_y2007ml2 (logdate);
CREATE INDEX measurement_y2008m0l_logdate ON measurement_y2008m0l (logdate);
We choose not to add further indexes at this time.

. We want our application to be able to say INSERT INTO measurement ... and have the data
be redirected into the appropriate partition table. We can arrange that by attaching a suitable
trigger function to the master table. If data will be added only to the latest partition, we can use a
very simple trigger function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()

RETURNS TRIGGER AS $$

BEGIN
INSERT INTO measurement_y2008m0l1 VALUES (NEW.x);
RETURN NULL;

END;

$S

LANGUAGE plpgsql;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger
BEFORE INSERT ON measurement
FOR EACH ROW EXECUTE PROCEDURE measurement_insert_trigger();

We must redefine the trigger function each month so that it always points to the current partition.
The trigger definition does not need to be updated, however.

81

Chapter 5. Data Definition

We might want to insert data and have the server automatically locate the partition into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $$
BEGIN

END;
S

IF (NEW.logdate >= DATE ’2006-02-01" AND
NEW.logdate < DATE '2006-03-01") THEN

INSERT INTO measurement_y2006m02 VALUES (NEW.

ELSIF (NEW.logdate >= DATE ’'2006-03-01" AND
NEW.logdate < DATE ’2006-04-01") THEN

INSERT INTO measurement_y2006m03 VALUES (NEW.

ELSIF (NEW.logdate >= DATE ’2008-01-01" AND
NEW.logdate < DATE ’'2008-02-01") THEN

INSERT INTO measurement_y2008m01 VALUES (NEW.

ELSE

RAISE EXCEPTION ’Date out of range. Fix the
END IF;
RETURN NULL;

LANGUAGE plpgsql;
The trigger definition is the same as before. Note that each IF test must exactly match the CHECK
constraint for its partition.

measurement_insert_trigger ()

While this function is more complex than the single-month case, it doesn’t need to be updated as
often, since branches can be added in advance of being needed.

Note: In practice it might be best to check the newest partition first, if most inserts go into

parts of this example.

that partition. For simplicity we have shown the trigger’s tests in the same order as in other

As we can see, a complex partitioning scheme could require a substantial amount of DDL. In the
above example we would be creating a new partition each month, so it might be wise to write a script
that generates the required DDL automatically.

5.10.3. Managing Partitions

Normally the set of partitions established when initially defining the table are not intended to remain
static. It is common to want to remove old partitions of data and periodically add new partitions
for new data. One of the most important advantages of partitioning is precisely that it allows this
otherwise painful task to be executed nearly instantaneously by manipulating the partition structure,
rather than physically moving large amounts of data around.

The simplest option for removing old data is simply to drop the partition that is no longer necessary:

DROP TA

BLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn’t have to individually delete every

record.

82

fur

Chapter 5. Data Definition

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

This allows further operations to be performed on the data before it is dropped. For example, this is
often a useful time to back up the data using COPY, pg_dump, or similar tools. It might also be a useful
time to aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

CREATE TABLE measurement_y2008m02 (
CHECK (logdate >= DATE ’2008-02-01" AND logdate < DATE ’2008-03-01")
) INHERITS (measurement);

As an alternative, it is sometimes more convenient to create the new table outside the partition struc-
ture, and make it a proper partition later. This allows the data to be loaded, checked, and transformed
prior to it appearing in the partitioned table:

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS) ;
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE ’'2008-02-01’ AND logdate < DATE ’2008-03-01'");
\copy measurement_y2008m02 from ’'measurement_y2008m02’
—— possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

5.10.4. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned
tables defined in the fashion described above. As an example:

SET constraint_exclusion = on;
SELECT count () FROM measurement WHERE logdate >= DATE ’2008-01-01'";

Without constraint exclusion, the above query would scan each of the partitions of the measurement
table. With constraint exclusion enabled, the planner will examine the constraints of each partition
and try to prove that the partition need not be scanned because it could not contain any rows meeting
the query’s WHERE clause. When the planner can prove this, it excludes the partition from the query
plan.

You can use the EXPLAIN command to show the difference between a plan with
constraint_exclusion on and a plan with it off. A typical unoptimized plan for this type of table
setup is:

SET constraint_exclusion = off;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01’";

QUERY PLAN

Aggregate (cost=158.66..158.68 rows=1 width=0)
-> Append (cost=0.00..151.88 rows=2715 width=0)
-> Seq Scan on measurement (cost=0.00..30.38 rows=543 width=0)

83

Filter:

-> Seqg Scan

Filter:

-> Seqg Scan

Filter:

-> Seqg Scan

Filter:

-> Seqg Scan

Filter:

Chapter 5. Data Definition

(logdate >= ’72008-01-01"::date)

on measurement_y2006m02 measurement
(logdate >= 72008-01-01"::date)

on measurement_y2006m03 measurement
(logdate >= 72008-01-01'::date)

on measurement_y2007ml2 measurement
(logdate >= ’72008-01-01"::date)

on measurement_y2008m01l measurement
(logdate >= ’72008-01-01"::date)

(cost=0.00.

(cost=0.00.

(cost=0.00.

(cost=0.00.

.30.

.30.

.30.

.30.

38

38

38

38

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
constraint exclusion, we get a significantly cheaper plan that will deliver the same answer:

SET constraint_exclusion = on;

EXPLAIN SELECT count (*)

QUERY PLAN

FROM measurement WHERE logdate >= DATE

72008-01-01";

rows=543

rows=543

rows=543

rows=543

Wi

Wi

Wi

Aggregate (cost=63.47..63.48 rows=1 width=0)
-> Append (cost=0.00..60.75 rows=1086 width=0)

-> Seqg Scan

Filter:

-> Seqg Scan

Filter:

on measurement (cost=0.00..30.38 rows=543 width=0)

(logdate >= 72008-01-01"::date)
on measurement_y2008m0l1 measurement
(logdate >= 72008-01-01"::date)

(cost=0.00..30.38 rows=543 wi

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes.
Therefore it isn’t necessary to define indexes on the key columns. Whether an index needs to be
created for a given partition depends on whether you expect that queries that scan the partition will
generally scan a large part of the partition or just a small part. An index will be helpful in the latter

case but not the former.

The default (and recommended) setting of constraint_exclusion is actually neither on nor of £, but an
intermediate setting called partition, which causes the technique to be applied only to queries that
are likely to be working on partitioned tables. The on setting causes the planner to examine CHECK
constraints in all queries, even simple ones that are unlikely to benefit.

5.10.5. Alternative Partitioning Methods

A different approach to redirecting inserts into the appropriate partition table is to set up rules, instead
of a trigger, on the master table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE
72006-02-01" AND logdate < DATE ’2006-03-01")

(logdate >= DATE
DO INSTEAD

INSERT INTO measurement_y2006m02 VALUES (NEW.x);

CREATE RULE measurement_insert_y2008m0l AS
ON INSERT TO measurement WHERE
72008-01-01" AND logdate < DATE ’2008-02-01")

(logdate >= DATE
DO INSTEAD

INSERT INTO measurement_y2008m0l1 VALUES (NEW.x);

84

Chapter 5. Data Definition

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

Be aware that copy ignores rules. If you want to use COPY to insert data, you’ll need to copy into the
correct partition table rather than into the master. COPY does fire triggers, so you can use it normally
if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of
rules doesn’t cover the insertion date; the data will silently go into the master table instead.

Partitioning can also be arranged using a UNION ALL view, instead of table inheritance. For example,

CREATE VIEW measurement AS
SELECT * FROM measurement_y2006m02
UNION ALL SELECT % FROM measurement_y2006m03

UNION ALL SELECT % FROM measurement_y2007mll
UNION ALL SELECT % FROM measurement_y2007ml2
UNION ALL SELECT % FROM measurement_y2008m01;

However, the need to recreate the view adds an extra step to adding and dropping individual partitions
of the data set. In practice this method has little to recommend it compared to using inheritance.

5.10.6. Caveats

The following caveats apply to partitioned tables:

« There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates partitions and creates and/or modifies associated objects than to
write each by hand.

« The schemes shown here assume that the partition key column(s) of a row never change, or at
least do not change enough to require it to move to another partition. An UPDATE that attempts
to do that will fail because of the CHECK constraints. If you need to handle such cases, you can
put suitable update triggers on the partition tables, but it makes management of the structure much
more complicated.

« If you are using manual VACUUM or ANALYZE commands, don’t forget that you need to run them on
each partition individually. A command like:

ANALYZE measurement;
will only process the master table.

+ INSERT statements with ON CONFLICT clauses are unlikely to work as expected, as the ON
CONFLICT action is only taken in case of unique violations on the specified target relation, not its
child relations.

The following caveats apply to constraint exclusion:

« Constraint exclusion only works when the query’s WHERE clause contains constants (or exter-
nally supplied parameters). For example, a comparison against a non-immutable function such
as CURRENT_TIMESTAMP cannot be optimized, since the planner cannot know which partition the
function value might fall into at run time.

85

Chapter 5. Data Definition

« Keep the partitioning constraints simple, else the planner may not be able to prove that partitions
don’t need to be visited. Use simple equality conditions for list partitioning, or simple range tests for
range partitioning, as illustrated in the preceding examples. A good rule of thumb is that partitioning
constraints should contain only comparisons of the partitioning column(s) to constants using B-
tree-indexable operators.

« All constraints on all partitions of the master table are examined during constraint exclusion, so
large numbers of partitions are likely to increase query planning time considerably. Partitioning
using these techniques will work well with up to perhaps a hundred partitions; don’t try to use
many thousands of partitions.

5.11. Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that
resides outside PostgreSQL using regular SQL queries. Such data is referred to as foreign data. (Note
that this usage is not to be confused with foreign keys, which are a type of constraint within the
database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining data from it. There are some foreign data wrappers available as cont rib modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of
the existing foreign data wrappers suit your needs, you can write your own; see Chapter 55.

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like a normal table, but a foreign table has no storage
in the PostgreSQL server. Whenever it is used, PostgreSQL asks the foreign data wrapper to fetch
data from the external source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can
be provided by a user mapping, which can provide additional data such as user names and passwords
based on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CRE-
ATE USER MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

5.12. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible:

+ Views
» Functions and operators

« Data types and domains

86

Chapter 5. Data Definition

« Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.13. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you implicitly create a net of dependencies between the objects. For
instance, a table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we
considered in Section 5.3.5, with the orders table depending on it, would result in an error message
like this:

DROP TABLE products;

ERROR: cannot drop table products because other objects depend on it
DETAIL: constraint orders_product_no_fkey on table orders depends on table products
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent
objects individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed, as will any objects that depend on them, recursively.
In this case, it doesn’t remove the orders table, it only removes the foreign key constraint. It stops
there because nothing depends on the foreign key constraint. (If you want to check what DROP
cascaDpk will do, run DROP without CASCADE and read the DETAIL output.)

Almost all DROP commands in PostgreSQL support specifying CASCADE. Of course, the nature of
the possible dependencies varies with the type of the object. You can also write RESTRICT instead
of CASCADE to get the default behavior, which is to prevent dropping objects that any other objects
depend on.

Note: According to the SQL standard, specifying either RESTRICT or cASCADE is required in a
prop command. No database system actually enforces that rule, but whether the default behavior
iS RESTRICT Or CASCADE varies across systems.

If a DROP command lists multiple objects, CASCADE is only required when there are dependencies
outside the specified group. For example, when saying DROP TABLE tabl, tab2 the existence of
a foreign key referencing tabl from tab2 would not mean that CASCADE is needed to succeed.

For user-defined functions, PostgreSQL tracks dependencies associated with a function’s externally-
visible properties, such as its argument and result types, but not dependencies that could only be
known by examining the function body. As an example, consider this situation:

CREATE TYPE rainbow AS ENUM (’red’, ’'orange’, ’'yellow’,
"green’, ’'blue’, ’'purple’);

CREATE TABLE my_colors (color rainbow, note text);

CREATE FUNCTION get_color_note (rainbow) RETURNS text AS

87

Chapter 5. Data Definition

"SELECT note FROM my_colors WHERE color = $17
LANGUAGE SQL;

(See Section 36.4 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get_color_note function depends on the rainbow type: dropping the type would force dropping
the function, because its argument type would no longer be defined. But PostgreSQL will not consider
get_color_note to depend on the my_colors table, and so will not drop the function if the table is
dropped. While there are disadvantages to this approach, there are also benefits. The function is still
valid in some sense if the table is missing, though executing it would cause an error; creating a new
table of the same name would allow the function to work again.

88

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row. Even if you know only some column
values, a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, ’Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid this you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES (’'Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns
will be filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, ’Cheese’);
INSERT INTO products VALUES (1, ’Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, ’'Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES

89

Chapter 6. Data Manipulation

(1, ’"Cheese’, 9.99),
(2, '"Bread’, 1.99),
(3, 'Milk’, 2.99);

It is also possible to insert the result of a query (which might be no rows, one row, or many rows):

INSERT INTO products (product_no, name, price)
SELECT product_no, name, price FROM new_products
WHERE release_date = 'today’;

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip: When inserting a lot of data at the same time, consider using the COPY command. ltis not as
flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more information
on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it
is not always possible to directly specify which row to update. Instead, you specify which conditions
a row must meet in order to be updated. Only if you have a primary key in the table (independent of
whether you declared it or not) can you reliably address individual rows by choosing a condition that
matches the primary key. Graphical database access tools rely on this fact to allow you to update rows
individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let’s look at that command in detail. First is the key word UPDATE followed by the table name. As
usual, the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equal sign, and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

UPDATE products SET price = price » 1.10;

90

Chapter 6. Data Manipulation

As you see, the expression for the new value can refer to the existing value(s) in the row. We also
left out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is
present, only those rows that match the WHERE condition are updated. Note that the equals sign in
the SET clause is an assignment while the one in the WHERE clause is a comparison, but this does not
create any ambiguity. Of course, the WHERE condition does not have to be an equality test. Many other
operators are available (see Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment
in the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, ¢ = 1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to
discuss how to remove data that is no longer needed. Just as adding data is only possible in whole
rows, you can only remove entire rows from a table. In the previous section we explained that SQL
does not provide a way to directly address individual rows. Therefore, removing rows can only be
done by specifying conditions that the rows to be removed have to match. If you have a primary key
in the table then you can specify the exact row. But you can also remove groups of rows matching a
condition, or you can remove all rows in the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command.

For instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data From Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The
INSERT, UPDATE, and DELETE commands all have an optional RETURNING clause that supports this.
Use of RETURNING avoids performing an extra database query to collect the data, and is especially
valuable when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNING clause are the same as a SELECT command’s output list (see
Section 7.3). It can contain column names of the command’s target table, or value expressions using
those columns. A common shorthand is RETURNING *, which selects all columns of the target table
in order.

In an INSERT, the data available to RETURNING is the row as it was inserted. This is not so useful in
trivial inserts, since it would just repeat the data provided by the client. But it can be very handy when
relying on computed default values. For example, when using a serial column to provide unique
identifiers, RETURNING can return the ID assigned to a new row:

91

Chapter 6. Data Manipulation
CREATE TABLE users (firstname text, lastname text, id serial primary key);
INSERT INTO users (firstname, lastname) VALUES (’Joe’, ’'Cool’) RETURNING id;

The RETURNING clause is also very useful with INSERT ... SELECT.

In an UPDATE, the data available to RETURNING is the new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNING name, price AS new_price;

In a DELETE, the data available to RETURNING is the content of the deleted row. For example:

DELETE FROM products
WHERE obsoletion_date = ’'today’
RETURNING *;

If there are triggers (Chapter 37) on the target table, the data available to RETURNING is the row as
modified by the triggers. Thus, inspecting columns computed by triggers is another common use-case
for RETURNING.

92

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipu-
late that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL
the SELECT command is used to specify queries. The general syntax of the SELECT command is

[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]
The following sections describe the details of the select list, the table expression, and the sort specifi-
cation. WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:
SELECT » FROM tablel;

Assuming that there is a table called tablel, this command would retrieve all rows and all user-
defined columns from tablel. (The method of retrieval depends on the client application. For exam-
ple, the psql program will display an ASCII-art table on the screen, while client libraries will offer
functions to extract individual values from the query result.) The select list specification » means all
columns that the table expression happens to provide. A select list can also select a subset of the avail-
able columns or make calculations using the columns. For example, if tablel has columns named a,
b, and c (and perhaps others) you can make the following query:

SELECT a, b + ¢ FROM tablel;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROM tablel isasimple kind of table expression: it reads just one table. In general, table expressions
can be complex constructs of base tables, joins, and subqueries. But you can also omit the table
expression entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random() ;

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally
followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table
on disk, a so-called base table, but more complex expressions can be used to modify or combine base
tables in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in the FrROM clause. All these transforma-

93

Chapter 7. Queries

tions produce a virtual table that provides the rows that are passed to the select list to compute the
output rows of the query.

7.2.1. The rroM Clause

The FROM Clause derives a table from one or more other tables given in a comma-separated table
reference list.

FROM table_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a sub-
query, a JOIN construct, or complex combinations of these. If more than one table reference is listed
in the FROM clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed;
see below). The result of the FrROM list is an intermediate virtual table that can then be subject to
transformations by the WHERE, GROUP BY, and HAVING clauses and is finally the result of the overall
table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its descendant tables, unless the key word
ONLY precedes the table name. However, the reference produces only the columns that appear in the
named table — any columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write x after the table name to explicitly
specify that descendant tables are included. Writing » is not necessary since that behavior is the
default (unless you have changed the setting of the sql_inheritance configuration option). However
writing » might be useful to emphasize that additional tables will be searched.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of a joined table is

Tl join type T2 [join condition]

Joins of all types can be chained together, or nested: either or both 71 and 72 can be joined tables.
Parentheses can be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

Join Types
Cross join
Tl CROSS JOIN T2

For every possible combination of rows from 71 and 72 (i.e., a Cartesian product), the joined
table will contain a row consisting of all columns in 71 followed by all columns in T2. If the
tables have N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JOIN T2 isequivalent to FROM T1 INNER JOIN T2 ON TRUE (see below).
It is also equivalent to FROM T1, T2.

Note: This latter equivalence does not hold exactly when more than two tables appear, be-
cause JoIN binds more tightly than comma. For example FrRoM 71 CROSS JOIN T2 INNER
JOIN T3 ON condition iS NOtthe same as FROM 71, T2 INNER JOIN T3 ON condition be-
cause the condition can reference 11 in the first case but not the second.

94

Chapter 7. Queries

Qualified joins

71 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
Tl { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list)
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and
FULL imply an outer join.

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL.
The join condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Thus, the joined table always has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, a joined row is added with null values in columns of T1. This
is the converse of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Also, for each row of T2 that does not satisfy the join condition with any row in T1, a
joined row with null values in the columns of T1 is added.

The on clause is the most general kind of join condition: it takes a Boolean value expression
of the same kind as is used in a WHERE clause. A pair of rows from 71 and 72 match if the on
expression evaluates to true.

The USING clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated
list of the shared column names and forms a join condition that includes an equality comparison
for each one. For example, joining T1 and T2 with USING (a, b) produces the join condition
ON Tl.a = T2.a AND Tl1.b = T2.b.

Furthermore, the output of JOIN USING suppresses redundant columns: there is no need to print
both of the matched columns, since they must have equal values. While JOIN ON produces all
columns from 71 followed by all columns from 72, JOIN USING produces one output column
for each of the listed column pairs (in the listed order), followed by any remaining columns from
71, followed by any remaining columns from T2.

Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of all column
names that appear in both input tables. As with USING, these columns appear only once in the

95

Chapter 7. Queries

output table. If there are no common column names, NATURAL JOIN behaves like JOIN
ON TRUE, producing a cross-product join.

Note: usING is reasonably safe from column changes in the joined relations since only the
listed columns are combined. NATURAL is considerably more risky since any schema changes
to either relation that cause a new matching column name to be present will cause the join
to combine that new column as well.

To put this together, assume we have tables t 1:

num | name
_____ b
11 a
2 | b
3] ¢
and t2
num | value
_____ +_______
1 | xxx
3 | yyy
5 | zzz

then we get the following results for the various joins:

=> SELECT x FROM tl CROSS JOIN t2;

num | name | num | value
————— Bt ettt
1] a | 1 | xxx
1] a \ 31 yyy
11 a | 5 | zzz
2 1 Db \ 1 | xxx
21D \ 3 1 yyy
2 | b | 5| zzz
3 1 c \ 1 | xxx
3| c \ 3 1 yyy
3 1 c \ 5 | zzz
(9 rows)

=> SELECT x FROM tl INNER JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o
1] a | 1 | xxx
31 c | 31 yyy
(2 rows)

=> SELECT x FROM tl INNER JOIN t2 USING (num);

num | name | value
_____ o
1] a | xxx
31 c | yyy
(2 rows)

96

=> SELECT x FROM tl NATURAL INNER JOIN t2;

num | name | value
_____ o
1] a | XXX
3 1 c | yyy
(2 rows)

=> SELECT x FROM tl LEFT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o ——
11 a \ 1 | xxx
2 1 Db \ |
3| c \ 3 1 yyy
(3 rows)

=> SELECT * FROM tl LEFT JOIN t2 USING (num);

num name value
,,,,, e

1] a | xxxX

2 | b \

31 c | yyy
(3 rows)

=> SELECT x FROM tl RIGHT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o —
1] a \ 1 | xxx
31 c | 3 1 yyy
| | 5 | zzz
(3 rows)

=> SELECT » FROM tl FULL JOIN t2 ON tl.num = t2.num;

num | name | num | value
77777 e S Rttt
1] a \ 1 | xxx
2 |1 Db \ |
3 1 ¢ \ 31 yyy
\ \ 5 | zzz
(4 rows)

Chapter 7. Queries

The join condition specified with ON can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num AND t2.value

num | name | num | value
————— o
1] a | 1 | xxx
2 1 Db \ |
3 1 c \ |
(3 rows)

= "xxx';

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num WHERE t2.value = ’'xxx’;

num | name | num | value

97

Chapter 7. Queries

11 a 1 | xxx
(1 row)

This is because a restriction placed in the ON clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it
matters a lot with outer joins.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in the rest of the query. This is called a table alias.

To create a table alias, write

FROM table_reference AS alias
or

FROM table_reference alias

The As key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT x= FROM some_very_long_table_name s JOIN another_fairly long_name a ON s.id = a.nu

The alias becomes the new name of the table reference so far as the current query is concerned — it
is not allowed to refer to the table by the original name elsewhere in the query. Thus, this is not valid:

SELECT x FROM my_table AS m WHERE my_table.a > 5; —— wrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a
table to itself, e.g.:

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_table, but the second statement assigns the alias to the result of
the join:

SELECT x FROM my_table AS a CROSS JOIN my_table AS b
SELECT % FROM (my_table AS a CROSS JOIN my_table) AS b

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table_reference [AS] alias (columnl [, column2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

98

Chapter 7. Queries

When an alias is applied to the output of a JOIN clause, the alias hides the original name(s) within the
JO1IN. For example:

SELECT a.x FROM my_table AS a JOIN your_table AS b ON
is valid SQL, but:
SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
alias name (as in Section 7.2.1.2). For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent to FROM tablel AS alias_name. More interesting cases, which cannot
be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES (’anne’, ’'smith’), (’bob’, ’Jjones’), (’joe’, ’"blow’))
AS names (first, last)

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional,
but is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar
types) or composite data types (table rows). They are used like a table, view, or subquery in the FROM
clause of a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE
clauses in the same manner as columns of a table, view, or subquery.

Table functions may also be combined using the ROWS FROM syntax, with the results returned in
parallel columns; the number of result rows in this case is that of the largest function result, with
smaller results padded with null values to match.

function_call [WITH ORDINALITY] [[AS] table alias [(column_alias [, ...])]]
ROWS FROM(function_call [, ...]) [WITH ORDINALITY] [[AS] table alias [(column_alias [,

If the WITH ORDINALITY clause is specified, an additional column of type bigint will be added to
the function result columns. This column numbers the rows of the function result set, starting from
1. (This is a generalization of the SQL-standard syntax for UNNEST ... WITH ORDINALITY.) By
default, the ordinal column is called ordinality, but a different column name can be assigned to it
using an AS clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, as if UNNEST (Section 9.18) had been called on each parameter
separately and combined using the ROWS FROM construct.

UNNEST (array_expression [, ...]) [WITH ORDINALITY] [[AS] table alias [(column_alias [,

99

Chapter 7. Queries

If no table_alias is specified, the function name is used as the table name; in the case of a ROWS
FROM () construct, the first function’s name is used.

If column aliases are not supplied, then for a function returning a base data type, the column name is
also the same as the function name. For a function returning a composite type, the result columns get
the names of the individual attributes of the type.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo (int) RETURNS SETOF foo AS $$
SELECT % FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT = FROM getfoo(l) AS t1;

SELECT x FROM foo
WHERE foosubid IN (
SELECT foosubid
FROM getfoo (foo.fooid) z
WHERE z.fooid = foo.fooid
)i

CREATE VIEW vw_getfoo AS SELECT » FROM getfoo(l);

SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudotype
record with no oUT parameters. When such a function is used in a query, the expected row structure
must be specified in the query itself, so that the system can know how to parse and plan the query.
This syntax looks like:

function_call [AS] alias (column _definition [, ...])
function_call AS [alias] (column_definition [, ...])
ROWS FROM(... function_call AS (column_definition [, ... 1) [, ... 1)

When not using the ROWS FROM () syntax, the column_definition list replaces the column alias
list that could otherwise be attached to the FROM item; the names in the column definitions serve as
column aliases. When using the ROWS FROM () syntax, a column_definition listcan be attached to
each member function separately; or if there is only one member function and no WITH ORDINALITY
clause, a column_definition list can be written in place of a column alias list following ROWS
FROM ().

Consider this example:

SELECT =
FROM dblink (’ dbname=mydb’, ’'SELECT proname, prosrc FROM pg_proc’)
AS tl (proname name, prosrc text)
WHERE proname LIKE ’'bytea%’;

The dblink function (part of the dblink module) executes a remote query. It is declared to return
record since it might be used for any kind of query. The actual column set must be specified in the
calling query so that the parser knows, for example, what « should expand to.

This example uses ROWS FROM:

100

Chapter 7. Queries

SELECT «
FROM ROWS FROM
(
json_to_recordset (' [{"a":40,"b":"foo"}, {"a":"100","b":"bar"}]")
AS (a INTEGER, b TEXT),
generate_series (1, 3)
) AS x (p, 9, s)
ORDER BY p;

p I a | s
I fom I
40 | foo | 1
100 | bar | 2

\ | 3

It joins two functions into a single FROM target. json_to_recordset () is instructed to return two
columns, the first integer and the second text. The result of generate_series () is used directly.
The ORDER BY clause sorts the column values as integers.

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROM can be preceded by the key word LATERAL. This allows them to ref-
erence columns provided by preceding FROM items. (Without LATERAL, each subquery is evaluated
independently and so cannot cross-reference any other FROM item.)

Table functions appearing in FROM can also be preceded by the key word LATERAL, but for functions
the key word is optional; the function’s arguments can contain references to columns provided by
preceding FROM items in any case.

A LATERAL item can appear at top level in the FROM list, or within a JOIN tree. In the latter case it
can also refer to any items that are on the left-hand side of a JOIN that it is on the right-hand side of.

When a FROM item contains LATERAL cross-references, evaluation proceeds as follows: for each row
of the FrROM item providing the cross-referenced column(s), or set of rows of multiple FROM items pro-
viding the columns, the LATERAL item is evaluated using that row or row set’s values of the columns.
The resulting row(s) are joined as usual with the rows they were computed from. This is repeated for
each row or set of rows from the column source table(s).

A trivial example of LATERAL is

SELECT » FROM foo, LATERAL (SELECT x FROM bar WHERE bar.id = foo.bar_id) ss;

This is not especially useful since it has exactly the same result as the more conventional

SELECT * FROM foo, bar WHERE bar.id = foo.bar_id;

LATERAL is primarily useful when the cross-referenced column is necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that vertices (polygon) returns the set of vertices of a polygon, we could
identify close-together vertices of polygons stored in a table with:

SELECT pl.id, p2.id, v1, v2
FROM polygons pl, polygons p2,
LATERAL vertices (pl.poly) vl1,
LATERAL vertices (p2.poly) v2
WHERE (vl <-> v2) < 10 AND pl.id != p2.id;

101

Chapter 7. Queries

This query could also be written

SELECT pl.id, p2.id, v1, v2

FROM polygons pl CROSS JOIN LATERAL vertices(pl.poly) vl,
polygons p2 CROSS JOIN LATERAL vertices (p2.poly) v2

WHERE (vl <-> v2) < 10 AND pl.id != p2.id;

or in several other equivalent formulations. (As already mentioned, the LATERAL key word is unnec-
essary in this example, but we use it for clarity.)

It is often particularly handy to LEFT JOIN to a LATERAL subquery, so that source rows will
appear in the result even if the LATERAL subquery produces no rows for them. For example, if
get_product_names () returns the names of products made by a manufacturer, but some
manufacturers in our table currently produce no products, we could find out which ones those are
like this:

SELECT m.name
FROM manufacturers m LEFT JOIN LATERAL get_product_names (m.id) pname ON true
WHERE pname IS NULL;

7.2.2. The wHERE Clause

The syntax of the WHERE Clause is

WHERE search_condition
where search condition is any value expression (see Section 4.2) that returns a value of type
boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (i.e., if the result is false or null) it is discarded. The search condition typically references
at least one column of the table generated in the FROM clause; this is not required, but otherwise the
WHERE clause will be fairly useless.

Note: The join condition of an inner join can be written either in the wHERE clause or in the Jo1n
clause. For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The Jo1n syntax in the From clause is
probably not as portable to other SQL database management systems, even though it is in the
SQL standard. For outer joins there is no choice: they must be done in the From clause. The on
or usING clause of an outer join is not equivalent to a weerE condition, because it results in the
addition of rows (for unmatched input rows) as well as the removal of rows in the final result.

102

Chapter 7. Queries

Here are some examples of WHERE clauses:

SELECT

SELECT

SELECT

SELECT

SELECT

SELECT

FROM fdt WHERE cl > 5

FROM

FROM

FROM

FROM

FROM

fdt

fdt

fdt

fdt

fdt

WHERE cl IN (1, 2, 3)

WHERE cl IN (SELECT cl FROM t2)

WHERE cl IN (SELECT c¢3 FROM t2 WHERE c2 = fdt.cl + 10)

WHERE cl BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.cl + 10)

WHERE EXISTS (SELECT cl FROM t2 WHERE c2 > fdt.cl)

£dt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from fdt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced
in the subqueries. Qualifying c1 as £dt . c1 is only necessary if c1 is also the name of a column in the
derived input table of the subquery. But qualifying the column name adds clarity even when it is not
needed. This example shows how the column naming scope of an outer query extends into its inner

queries.

7.2.3. The croupr BY and HaVING Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP
BY clause, and elimination of group rows using the HAVING clause.

SELECT select_list

FROM
[WHERE

-]

GROUP BY grouping_column_reference [, grouping_column_reference]...

The GROUP BY Clause is used to group together those rows in a table that have the same values in all
the columns listed. The order in which the columns are listed does not matter. The effect is to combine
each set of rows having common values into one group row that represents all rows in the group. This
is done to eliminate redundancy in the output and/or compute aggregates that apply to these groups.

For instance:

=> SELECT * FROM testl;

=> SELECT x FROM testl GROUP BY x;

(3 rows)

103

AND 100

Chapter 7. Queries

In the second query, we could not have written SELECT » FROM testl GROUP BY x, because
there is no single value for the column y that could be associated with each group. The grouped-
by columns can be referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except
in aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;
sum

(3 rows

Here sum is an aggregate function that computes a single value over the entire group. More informa-
tion about the available aggregate functions can be found in Section 9.20.

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the prsTINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of all
products):

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause
since they are referenced in the query select list (but see below). The column s.units does not
have to be in the GROUP BY list since it is only used in an aggregate expression (sum (. . .)), which
represents the sales of a product. For each product, the query returns a summary row about all sales
of the product.

If the products table is set up so that, say, product_id is the primary key, then it would be enough to
group by product_id in the above example, since name and price would be functionally dependent
on the product ID, and so there would be no ambiguity about which name and price value to return
for each product ID group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this
to also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead
of simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING
clause can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;

X | sum

104

Chapter 7. Queries

T
a | 4
b | 5
(2 rows)

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < ’'c’;

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’'4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price % s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expres-
sion is only true for sales during the last four weeks), while the HAVING clause restricts the output to
groups with total gross sales over 5000. Note that the aggregate expressions do not necessarily need
to be the same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result
is a single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The
same is true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY
clause.

7.2.4. GROUPING SETS, CUBE, and ROLLUP

More complex grouping operations than those described above are possible using the concept of
grouping sets. The data selected by the FROM and WHERE clauses is grouped separately by each speci-
fied grouping set, aggregates computed for each group just as for simple GROUP BY clauses, and then
the results returned. For example:

=> SELECT * FROM items_sold;

brand | size | sales
_______ o
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5

(4 rows)

=> SELECT brand, size, sum(sales) FROM items_sold GROUP BY GROUPING SETS ((brand),
brand | size | sum
_______ b
Foo | | 30
Bar | | 20
| L | 15
| M | 35
| |50

105

(size),

0);

Chapter 7. Queries

(5 rows)

Each sublist of GROUPING SETS may specify zero or more columns or expressions and is interpreted
the same way as though it were directly in the GROUP BY clause. An empty grouping set means that
all rows are aggregated down to a single group (which is output even if no input rows were present),
as described above for the case of aggregate functions with no GROUP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for
grouping sets in which those columns do not appear. To distinguish which grouping a particular output
row resulted from, see Table 9-55.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the
form

ROLLUP (el, e2, e3, ...)

represents the given list of expressions and all prefixes of the list including the empty list; thus it is
equivalent to

GROUPING SETS (
(el, e2, e3, ...),

(e1, e2),
(el),
()

This is commonly used for analysis over hierarchical data; e.g., total salary by department, division,
and company-wide total.

A clause of the form

CUBE (el, e2, ...)

represents the given list and all of its possible subsets (i.e., the power set). Thus
CUBE (a, b, c)

is equivalent to

GROUPING SETS (
a, b, c),

(

(a, b)
(a, c),
(a)
(b, c),
(b)
(c)y
(

)

The individual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists
of elements in parentheses. In the latter case, the sublists are treated as single units for the purposes
of generating the individual grouping sets. For example:

CUBE ((a, b), (c, 4d))

106

Chapter 7. Queries

is equivalent to

GROUPING SETS (
(a, b, ¢, d
(a, b

(c, d

(

)

and

ROLLUP (a, (b, c), d)

is equivalent to

GROUPING SETS (
(a, b, ¢, d

)
(a, b, ¢)
(a),
()

The cUBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested inside
a GROUPING SETS clause. If one GROUPING SETS clause is nested inside another, the effect is the
same as if all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in a single GROUP BY clause, then the final list of grouping
sets is the cross product of the individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))
is equivalent to

GROUP BY GROUPING SETS (
(a, b, ¢, d), (a, b, ¢, e),

(a, b, d), (a, b, e),
(a, ¢, d), (a, ¢, e),
(a, d), (a, e)

Note: The construct (a, b) is normally recognized in expressions as a row constructor. Within
the crour BY clause, this does not apply at the top levels of expressions, and (a, b) is parsed
as a list of expressions as described above. If for some reason you need a row constructor in a
grouping expression, use ROW (a, b).

7.2.5. Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.21 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVING filtering is performed. That is,
if the query uses any aggregates, GROUP BY, or HAVING, then the rows seen by the window functions
are the group rows instead of the original table rows from FROM/WHERE.

107

Chapter 7. Queries

When multiple window functions are used, all the window functions having syntactically equivalent
PARTITION BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated
in a single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY
does not uniquely determine an ordering. However, no guarantees are made about the evaluation of
functions having different PARTITION BY or ORDER BY specifications. (In such cases a sort step is
typically required between the passes of window function evaluations, and the sort is not guaranteed
to preserve ordering of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions’ PARTITION BY/ORDER BY clauses. It is not
recommended to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be
sure the results are sorted in a particular way.

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an inter-
mediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table
is finally passed on to processing by the select list. The select list determines which columns of the
intermediate table are actually output.

7.3.1. Select-List ltems

The simplest kind of select list is » which emits all columns that the table expression produces.
Otherwise, a select list is a comma-separated list of value expressions (as defined in Section 4.2). For
instance, it could be a list of column names:

SELECT a, b, c FROM

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
as in the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:

SELECT tbll.a, tbl2.a, tbll.b FROM

When working with multiple tables, it can also be useful to ask for all the columns of a particular
table:

SELECT tbll.x, tbl2.a FROM

See Section 8.16.5 for more about the table name. * notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row’s values
substituted for any column references. But the expressions in the select list do not have to reference
any columns in the table expression of the FROM clause; they can be constant arithmetic expressions,
for instance.

108

Chapter 7. Queries
7.3.2. Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for use in an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM

If no output column name is specified using AS, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of
the function. For complex expressions, the system will generate a generic name.

The As keyword is optional, but only if the new column name does not match any PostgreSQL key-
word (see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column
name. For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM
but this does:

SELECT a "value", b + ¢ AS sum FROM

For protection against possible future keyword additions, it is recommended that you always either
write AS or double-quote the output column name.

Note: The naming of output columns here is different from that done in the From clause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list is the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DISTINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list
(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all

rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:
SELECT DISTINCT ON (expression [, expression ...]) select_list

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for
which all the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON
processing occurs after ORDER BY sorting.)

109

Chapter 7. Queries

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious use of GROUP BY and
subqueries in FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and differ-
ence. The syntax is

queryl UNION [ALL] gquery2
queryl INTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

queryl and query2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

queryl UNION query2 UNION query3
which is executed as:

(queryl UNION query2) UNION query3

UNION effectively appends the result of query2 to the result of query1 (although there is no guaran-
tee that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate
rows from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of query and in the result of query2. Dupli-
cate rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is some-
times called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT
ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which means that they return the same number of columns and the corresponding
columns have compatible data types, as described in Section 10.5.

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order
in that case will depend on the scan and join plan types and the order on disk, but it must not be relied
on. A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:
SELECT select_list
FROM table expression

ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]

110

Chapter 7. Queries

The sort expression(s) can be any expression that would be valid in the query’s select list. An example
is:

SELECT a, b FROM tablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can be followed by an optional ASC or DEsC keyword
to set the sort direction to ascending or descending. ASC order is the default. Ascending order puts
smaller values first, where “smaller” is defined in terms of the < operator. Similarly, descending order
is determined with the > operator. '

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before
or after non-null values in the sort ordering. By default, null values sort as if larger than any non-null
value; that is, NULLS FIRST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC,
y DESC.

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, c FROM tablel ORDER BY sum;
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone,
that is, it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, c¢c FROM tablel ORDER BY sum + cC; —— wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The
output column is used in such cases. This would only cause confusion if you use AS to rename an
output column to match some other table column’s name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this
case it is only permitted to sort by output column names or numbers, not by expressions.

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of
the query:

SELECT select_list
FROM table expression
[ORDER BY ...]
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly fewer, if the query
itself yields fewer rows). LIMIT ALL is the same as omitting the LIMIT clause, as is LIMIT with a
NULL argument.

1. Actually, PostgreSQL uses the default B-tree operator class for the expression’s data type to determine the sort ordering
for asc and DEsc. Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but
a user-defined data type’s designer could choose to do something different.

111

Chapter 7. Queries

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as
omitting the OFFSET clause, as is OFFSET with a NULL argument.

If both OFFSET and LIMIT appear, then OFFSET rows are skipped before starting to count the LIMIT
rows that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query’s rows. You might be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating query plans, so you are very likely
to get different plans (yielding different row orders) depending on what you give for LIMIT and
OFFSET. Thus, using different LIMIT/OFFSET values to select different subsets of a query result will
give inconsistent results unless you enforce a predictable result ordering with ORDER BY. This is not
a bug; it is an inherent consequence of the fact that SQL does not promise to deliver the results of a
query in any particular order unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. vALUES Lists

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...]1) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each
list must have compatible data types. The actual data type assigned to each column of the result is
determined using the same rules as for UNION (see Section 10.5).

As an example:
VALUES (1, ’'one’), (2, ’'two’), (3, "three’);
will return a table of two columns and three rows. It’s effectively equivalent to:

SELECT 1 AS columnl, ’'one’ AS column2
UNION ALL

SELECT 2, ’'two’

UNION ALL

SELECT 3, ’three’;

By default, PostgreSQL assigns the names columnl, column2, etc. to the columns of a VALUES
table. The column names are not specified by the SQL standard and different database systems do it
differently, so it’s usually better to override the default names with a table alias list, like this:

=> SELECT % FROM (VALUES (1, ’'one’), (2, 'two’), (3, '"three’)) AS t (num,letter);
num | letter

112

Chapter 7. Queries

Syntactically, VALUES followed by expression lists is treated as equivalent to:
SELECT select_list FROM table_expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used
as the data source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. wiTH Queries (Common Table Expressions)

WITH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a WITH clause can be a SELECT,
INSERT, UPDATE, or DELETE; and the WITH clause itself is attached to a primary statement that can
also be a SELECT, INSERT, UPDATE, or DELETE.

7.8.1. SELECT in WITH

The basic value of SELECT in WITH is to break down complicated queries into simpler parts. An
example is:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
)
SELECT region,
product,
SUM (quantity) AS product_units,
SUM (amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The WITH clause defines
two auxiliary statements named regional_sales and top_regions, where the output of
regional_sales is used in top_regions and the output of top_regions is used in the primary
SELECT query. This example could have been written without wITH, but we’d have needed two
levels of nested sub-SELECTs. It’s a bit easier to follow this way.

The optional RECURSIVE modifier changes WITH from a mere syntactic convenience into a feature
that accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query
can refer to its own output. A very simple example is this query to sum the integers from 1 through
100:

WITH RECURSIVE t (n) AS (

113

Chapter 7. Queries

VALUES (1)
UNION ALL
SELECT n+l1 FROM t WHERE n < 100

)
SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION
ALL), then a recursive term, where only the recursive term can contain a reference to the query’s own
output. Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows. In-
clude all remaining rows in the result of the recursive query, and also place them in a temporary
working table.

2. So long as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for
the recursive self-reference. For UNION (but not UNION ALL), discard duplicate rows
and rows that duplicate any previous result row. Include all remaining rows in the result
of the recursive query, and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table,
then empty the intermediate table.

Note: Strictly speaking, this process is iteration not recursion, but RECURSIVE is the terminology
chosen by the SQL standards committee.

In the example above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE
clause, and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

WITH RECURSIVE included_parts (sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part = ’'our_product’
UNION ALL
SELECT p.sub_part, p.part, p.quantity
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part
)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNTON instead
of UNION ALL can accomplish this by discarding rows that duplicate previous output rows. However,
often a cycle does not involve output rows that are completely duplicate: it may be necessary to check
just one or a few fields to see if the same point has been reached before. The standard method for

114

Chapter 7. Queries

handling such situations is to compute an array of the already-visited values. For example, consider
the following query that searches a table graph using a 1ink field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT x FROM search_graph;

This query will loop if the 1ink relationships contain cycles. Because we require a “depth” output,
just changing UNION ALL to UNION would not eliminate the looping. Instead we need to recognize
whether we have reached the same row again while following a particular path of links. We add two
columns path and cycle to the loop-prone query:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [g.id],

false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,

g.id = ANY (path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle

)
SELECT * FROM search_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fields £1 and £2:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [ROW (g.f1l, g.f2)1,

false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || ROW(g.fl, g.f2),
ROW(g.fl, g.f2) = ANY (path)

FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle

)
SELECT » FROM search_graph;

Tip: Omit the row () syntax in the common case where only one field needs to be checked to
recognize a cycle. This allows a simple array rather than a composite-type array to be used,
gaining efficiency.

115

Chapter 7. Queries

Tip: The recursive query evaluation algorithm produces its output in breadth-first search order.
You can display the results in depth-first search order by making the outer query orDER BY a
“path” column constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop is to place a LIMIT in
the parent query. For example, this query would loop forever without the LIMIT:

WITH RECURSIVE t(n) AS (
SELECT 1
UNION ALL
SELECT n+l1 FROM t

)
SELECT n FROM t LIMIT 100;

This works because PostgreSQL’s implementation evaluates only as many rows of a WITH query as
are actually fetched by the parent query. Using this trick in production is not recommended, because
other systems might work differently. Also, it usually won’t work if you make the outer query sort the
recursive query’s results or join them to some other table, because in such cases the outer query will
usually try to fetch all of the WITH query’s output anyway.

A useful property of WITH queries is that they are evaluated only once per execution of the parent
query, even if they are referred to more than once by the parent query or sibling WITH queries. Thus,
expensive calculations that are needed in multiple places can be placed within a WITH query to avoid
redundant work. Another possible application is to prevent unwanted multiple evaluations of func-
tions with side-effects. However, the other side of this coin is that the optimizer is less able to push
restrictions from the parent query down into a WITH query than an ordinary subquery. The WITH query
will generally be evaluated as written, without suppression of rows that the parent query might dis-
card afterwards. (But, as mentioned above, evaluation might stop early if the reference(s) to the query
demand only a limited number of rows.)

The examples above only show WITH being used with SELECT, but it can be attached in the same way
to INSERT, UPDATE, or DELETE. In each case it effectively provides temporary table(s) that can be
referred to in the main command.

7.8.2. Data-Modifying Statements in wiTH

You can use data-modifying statements (INSERT, UPDATE, or DELETE) in WITH. This allows you to
perform several different operations in the same query. An example is:

WITH moved_rows AS (
DELETE FROM products
WHERE
"date" >= ’2010-10-01" AND
"date" < 72010-11-01"
RETURNING =*
)
INSERT INTO products_log
SELECT x= FROM moved_rows;

116

Chapter 7. Queries

This query effectively moves rows from products to products_log. The DELETE in WITH deletes
the specified rows from products, returning their contents by means of its RETURNING clause; and
then the primary query reads that output and inserts it into products_log.

A fine point of the above example is that the WITH clause is attached to the INSERT, not the sub-
SELECT within the INSERT. This is necessary because data-modifying statements are only allowed
in WITH clauses that are attached to the top-level statement. However, normal wITH visibility rules
apply, so it is possible to refer to the WITH statement’s output from the sub-SELECT.

Data-modifying statements in WITH usually have RETURNING clauses (see Section 6.4), as shown
in the example above. It is the output of the RETURNING clause, not the target table of the data-
modifying statement, that forms the temporary table that can be referred to by the rest of the query.
If a data-modifying statement in WITH lacks a RETURNING clause, then it forms no temporary table
and cannot be referred to in the rest of the query. Such a statement will be executed nonetheless. A
not-particularly-useful example is:

WITH t AS (
DELETE FROM foo

)
DELETE FROM bar;

This example would remove all rows from tables foo and bar. The number of affected rows reported
to the client would only include rows removed from bar.

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible
to work around this limitation by referring to the output of a recursive WITH, for example:

WITH RECURSIVE included_parts (sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = 'our_product’
UNION ALL
SELECT p.sub_part, p.part
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part
)
DELETE FROM parts
WHERE part IN (SELECT part FROM included_parts);

This query would remove all direct and indirect subparts of a product.

Data-modifying statements in WITH are executed exactly once, and always to completion, indepen-
dently of whether the primary query reads all (or indeed any) of their output. Notice that this is
different from the rule for SELECT in WITH: as stated in the previous section, execution of a SELECT
is carried only as far as the primary query demands its output.

The sub-statements in WITH are executed concurrently with each other and with the main query.
Therefore, when using data-modifying statements in WITH, the order in which the specified updates
actually happen is unpredictable. All the statements are executed with the same snapshot (see Chapter
13), so they cannot “see” one another’s effects on the target tables. This alleviates the effects of the
unpredictability of the actual order of row updates, and means that RETURNING data is the only way
to communicate changes between different WITH sub-statements and the main query. An example of
this is that in

WITH t AS (
UPDATE products SET price = price x 1.05
RETURNING =*

)
SELECT x FROM products;

117

Chapter 7. Queries

the outer SELECT would return the original prices before the action of the UPDATE, while in

WITH t AS (
UPDATE products SET price = price = 1.05
RETURNING =

)
SELECT = FROM t;

the outer SELECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the modi-
fications takes place, but it is not easy (and sometimes not possible) to reliably predict which one.
This also applies to deleting a row that was already updated in the same statement: only the update
is performed. Therefore you should generally avoid trying to modify a single row twice in a single
statement. In particular avoid writing WITH sub-statements that could affect the same rows changed by
the main statement or a sibling sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a data-modifying statement in WITH must not have a condi-
tional rule, nor an ALSO rule, nor an INSTEAD rule that expands to multiple statements.

118

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users can add new types to Post-
greSQL using the CREATE TYPE command.

Table 8-1 shows all the built-in general-purpose data types. Most of the alternative names listed in
the “Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition,
some internally used or deprecated types are available, but are not listed here.

Table 8-1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit [(n)] variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box on a plane

bytea binary data (“byte array”)

character [(n)] char [(n)] fixed-length character string

character varying [(n) |varchar [(n)] variable-length character string

]

cidr IPv4 or IPv6 network address

circle circle on a plane

date calendar date (year, month,
day)

double precision float8 double precision floating-point
number (8 bytes)

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [fields] [time span

(p)]

json textual JSON data

jsonb binary JSON data, decomposed

line infinite line on a plane

lseg line segment on a plane

macaddr MAC (Media Access Control)
address

money currency amount

numeric [(p, s)] decimal [(p, s)] exact numeric of selectable
precision

path geometric path on a plane

pg_lsn PostgreSQL Log Sequence
Number

point geometric point on a plane

119

Chapter 8. Data Types

Name Aliases Description

polygon closed geometric path on a
plane

real float4 single precision floating-point
number (4 bytes)

smallint int2 signed two-byte integer

smallserial serial? autoincrementing two-byte
integer

serial seriald autoincrementing four-byte
integer

text variable-length character string

time [(p) 1 [without time of day (no time zone)

time zone]

time [(p)] with time |timetz time of day, including time

zone zone

timestamp [(p) 1 I date and time (no time zone)

without time zone]

timestamp [(p)] with timestamptz date and time, including time

time zone

zone

tsquery

text search query

tsvector

text search document

txid_snapshot

user-level transaction ID

snapshot
uuid universally unique identifier
xml XML data

Compatibility: The following types (or spellings thereof) are specified by SQL: bigint, bit, bit
varying, boolean, char, character varying, character, varchar, date, double precision,
integer, interval, numeric, decimal, real, smallint, time (with or without time zone),
timestamp (with or without time zone), xm1.

Each data type has an external representation determined by its input and output functions. Many of
the built-in types have obvious external formats. However, several types are either unique to Post-
greSQL, such as geometric paths, or have several possible formats, such as the date and time types.
Some of the input and output functions are not invertible, i.e., the result of an output function might

lose accuracy when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point num-
bers, and selectable-precision decimals. Table 8-2 lists the available types.

Table 8-2. Numeric Types

Name \ Storage Size

Description

Range

120

Chapter 8. Data Types

Name Storage Size Description Range
smallint 2 bytes small-range integer -32768 to +32767
integer 4 bytes typical choice for -2147483648 to
integer +2147483647
bigint 8 bytes large-range integer -
9223372036854775808
to
+9223372036854775807
decimal variable user-specified up to 131072 digits
precision, exact before the decimal

point; up to 16383
digits after the decimal

point
numeric variable user-specified up to 131072 digits
precision, exact before the decimal

point; up to 16383
digits after the decimal

point
real 4 bytes variable-precision, 6 decimal digits
inexact precision
double precision |8 bytes variable-precision, 15 decimal digits
inexact precision
smallserial 2 bytes small autoincrementing | 1 to 32767
integer
serial 4 bytes autoincrementing 1 to 2147483647
integer
bigserial 8 bytes large autoincrementing | 1 to
integer 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information.
The following sections describe the types in detail.

8.1.1. Integer Types

The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the common choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint
type is designed to be used when the range of the integer type is insufficient.

SQL only specifies the integer types integer (or int), smallint, and bigint. The type names
int2, int4, and int8 are extensions, which are also used by some other SQL database systems.

121

Chapter 8. Data Types

8.1.2. Arbitrary Precision Numbers

The type numeric can store numbers with a very large number of digits. It is especially recom-
mended for storing monetary amounts and other quantities where exactness is required. Calculations
with numeric values yield exact results where possible, e.g., addition, subtraction, multiplication.
However, calculations on numeric values are very slow compared to the integer types, or to the
floating-point types described in the next section.

We use the following terms below: the precision of a numeric is the total count of significant digits
in the whole number, that is, the number of digits to both sides of the decimal point. The scale of a
numeric is the count of decimal digits in the fractional part, to the right of the decimal point. So the
number 23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a scale of
Zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To
declare a column of type numeric use the syntax:

NUMERIC (precision, scale)

The precision must be positive, the scale zero or positive. Alternatively:
NUMERIC (precision)

selects a scale of 0. Specifying:

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale
can be stored, up to the implementation limit on precision. A column of this kind will not coerce
input values to any particular scale, whereas numeric columns with a declared scale will coerce input
values to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision.
We find this a bit useless. If you’re concerned about portability, always specify the precision and scale
explicitly.)

Note: The maximum allowed precision when explicitly specified in the type declaration is 1000;
NUMERIC without a specified precision is subject to the limits described in Table 8-2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digits to the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type
is more akin to varchar (n) than to char (n).) The actual storage requirement is two bytes for each
group of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the numeric type allows the special value NaN, meaning
“not-a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in
an SQL command, you must put quotes around it, for example UPDATE table SET x = ’NaN’.
On input, the string NaN is recognized in a case-insensitive manner.

Note: In most implementations of the “not-a-number” concept, Nan is not considered equal to any
other numeric value (including nan). In order to allow numeric values to be sorted and used in
tree-based indexes, PostgreSQL treats nan values as equal, and greater than all non-nan values.

122

Chapter 8. Data Types

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

When rounding values, the numeric type rounds ties away from zero, while (on most machines) the
real and double precision types round ties to the nearest even number. For example:

SELECT x,
round (x: :numeric) AS num_round,
round (x: :double precision) AS dbl_round
FROM generate_series(-3.5, 3.5, 1) as x;

X | num_round | dbl_round
,,,,,, e
-3.5 | -4 | -4
-2.5 | -3 -2
-1.5 | -2 | -2
-0.5 | -1 | -0
0.5 | 1| 0
1.5 | 2 2
2.5 | 31 2
3.5 | 4 | 4

(8 rows)

8.1.3. Floating-Point Types

The data types real and double precision are inexact, variable-precision numeric types. In prac-
tice, these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arith-
metic (single and double precision, respectively), to the extent that the underlying processor, operating
system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as ap-
proximations, so that storing and retrieving a value might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:

» If you require exact storage and calculations (such as for monetary amounts), use the numeric
type instead.

« If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

« Comparing two floating-point values for equality might not always work as expected.

On most platforms, the real type has a range of at least 1E-37 to 1E+37 with a precision of at least 6
decimal digits. The double precision type typically has a range of around 1E-307 to 1E+308 with
a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are
not representable as distinct from zero will cause an underflow error.

Note: The extra_float_digits setting controls the number of extra significant digits included when
a floating point value is converted to text for output. With the default value of o, the output is the
same on every platform supported by PostgreSQL. Increasing it will produce output that more
accurately represents the stored value, but may be unportable.

123

Chapter 8. Data Types

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
—Infinity
NaN

LEINT3

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, re-
spectively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values
will probably not work as expected.) When writing these values as constants in an SQL command,
you must put quotes around them, for example UPDATE table SET x = 'Infinity’. On input,
these strings are recognized in a case-insensitive manner.

Note: IEEE754 specifies that nan should not compare equal to any other floating-point value
(including nan). In order to allow floating-point values to be sorted and used in tree-based indexes,
PostgreSQL treats nan values as equal, and greater than all non-nan values.

PostgreSQL also supports the SQL-standard notations float and float (p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL
accepts £1loat (1) to float (24) as selecting the real type, while float (25) to float (53) select
double precision. Values of p outside the allowed range draw an error. £1oat with no precision
specified is taken to mean double precision.

Note: The assumption that real and double precision have exactly 24 and 53 bits in the man-
tissa respectively is correct for IEEE-standard floating point implementations. On non-IEEE plat-
forms it might be off a little, but for simplicity the same ranges of p are used on all platforms.

8.1.4. Serial Types

The data types smallserial, serial and bigserial are not true types, but merely a notational
convenience for creating unique identifier columns (similar to the AUTO_INCREMENT property sup-
ported by some other databases). In the current implementation, specifying:

CREATE TABLE tablename (
colname SERIAL
)i

is equivalent to specifying:

CREATE SEQUENCE tablename_colname_seq;
CREATE TABLE tablename (
colname integer NOT NULL DEFAULT nextval (' tablename_colname_seq’)
)i
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;

Thus, we have created an integer column and arranged for its default values to be assigned from a se-
quence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted. (In
most cases you would also want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate

124

Chapter 8. Data Types

values from being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as
“owned by” the column, so that it will be dropped if the column or table is dropped.

Note: Because smallserial, serial and bigserial are implemented using sequences, there
may be "holes" or gaps in the sequence of values which appears in the column, even if no rows
are ever deleted. A value allocated from the sequence is still "used up" even if a row containing
that value is never successfully inserted into the table column. This may happen, for example, if
the inserting transaction rolls back. See nextval () in Section 9.16 for details.

To insert the next value of the sequence into the serial column, specify that the serial column
should be assigned its default value. This can be done either by excluding the column from the list of
columns in the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names
bigserial and serial8 work the same way, except that they create abigint column. bigserial
should be used if you anticipate the use of more than 2*' identifiers over the lifetime of the table. The
type names smallserial and serial2 also work the same way, except that they create a smallint

column.

The sequence created for a serial column is automatically dropped when the owning column is

dropped. You can drop the sequence without dropping the column, but this will force removal of the
column default expression.

8.2. Monetary Types

The money type stores a currency amount with a fixed fractional precision; see Table 8-3. The frac-
tional precision is determined by the database’s Ic_monetary setting. The range shown in the table
assumes there are two fractional digits. Input is accepted in a variety of formats, including integer
and floating-point literals, as well as typical currency formatting, such as ’ $1, 000.00’. Output is
generally in the latter form but depends on the locale.

Table 8-3. Monetary Types

Name Storage Size Description Range

money 8 bytes currency amount -
92233720368547758.08
to
+92233720368547758.0

Since the output of this data type is locale-sensitive, it might not work to load money data into a
database that has a different setting of 1c_monetary. To avoid problems, before restoring a dump
into a new database make sure 1c_monetary has the same or equivalent value as in the database that

was dumped.

Values of the numeric, int, and bigint data types can be cast to money. Conversion from the real
and double precision data types can be done by casting to numeric first, for example:

SELECT "12.34’ ::float8::numeric: :money;

However, this is not recommended. Floating point numbers should not be used to handle money due

125

Chapter 8. Data Types

to the potential for rounding errors.
A money value can be cast to numeric without loss of precision. Conversion to other types could

potentially lose precision, and must also be done in two stages:

SELECT "52093.89' ::money::numeric::float8;

Division of a money value by an integer value is performed with truncation of the fractional part
towards zero. To get a rounded result, divide by a floating-point value, or cast the money value
to numeric before dividing and back to money afterwards. (The latter is preferable to avoid risk-
ing precision loss.) When a money value is divided by another money value, the result is double
precision (i.e., a pure number, not money); the currency units cancel each other out in the division.

8.3. Character Types

Table 8-4. Character Types

Name Description

character varying(n), varchar (n) variable-length with limit
character (n), char (n) fixed-length, blank padded
text variable unlimited length

Table 8-4 shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types: character varying(n) and character (n), where n
is a positive integer. Both of these types can store strings up to n characters (not bytes) in length.
An attempt to store a longer string into a column of these types will result in an error, unless the
excess characters are all spaces, in which case the string will be truncated to the maximum length.
(This somewhat bizarre exception is required by the SQL standard.) If the string to be stored is shorter
than the declared length, values of type character will be space-padded; values of type character
varying will simply store the shorter string.

If one explicitly casts a value to character varying(n) or character (n), then an over-length
value will be truncated to n characters without raising an error. (This too is required by the SQL
standard.)

The notations varchar (n) and char(n) are aliases for character varying(n) and
character (n), respectively. character without length specifier is equivalent to character (1).
If character varying is used without length specifier, the type accepts strings of any size. The
latter is a PostgreSQL extension.

In addition, PostgreSQL provides the text type, which stores strings of any length. Although the
type text is not in the SQL standard, several other SQL database management systems have it as
well.

Values of type character are physically padded with spaces to the specified width n, and are stored
and displayed that way. However, trailing spaces are treated as semantically insignificant and disre-
garded when comparing two values of type character. In collations where whitespace is significant,
this behavior can produce unexpected results; for example SELECT ’a ' ::CHAR(2) collate "C"
< E’a\n’::CHAR(2) returns true, even though C locale would consider a space to be greater than a
newline. Trailing spaces are removed when converting a character value to one of the other string
types. Note that trailing spaces are semantically significant in character varying and text val-

126

Chapter 8. Data Types

ues, and when using pattern matching, that is LTKE and regular expressions.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which
includes the space padding in the case of character. Longer strings have 4 bytes of overhead instead
of 1. Long strings are compressed by the system automatically, so the physical requirement on disk
might be less. Very long values are also stored in background tables so that they do not interfere with
rapid access to shorter column values. In any case, the longest possible character string that can be
stored is about 1 GB. (The maximum value that will be allowed for n in the data type declaration
is less than that. It wouldn’t be useful to change this because with multibyte character encodings
the number of characters and bytes can be quite different. If you desire to store long strings with no
specific upper limit, use text or character varying without a length specifier, rather than making
up an arbitrary length limit.)

Tip: There is no performance difference among these three types, apart from increased storage
space when using the blank-padded type, and a few extra CPU cycles to check the length when
storing into a length-constrained column. While character (n) has performance advantages in
some other database systems, there is no such advantage in PostgreSQL; in fact character (n)
is usually the slowest of the three because of its additional storage costs. In most situations text
Or character varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for infor-
mation about available operators and functions. The database character set determines the character
set used to store textual values; for more information on character set support, refer to Section 23.3.

Example 8-1. Using the Character Types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES ('ok’);

SELECT a, char_length(a) FROM testl; -- ©
char_length

[\

CREATE TABLE test2 (b varchar(5));

INSERT INTO test2 VALUES ('ok’);

INSERT INTO test2 VALUES (’good ")

INSERT INTO test2 VALUES (’too long’);

ERROR: value too long for type character varying(5)

INSERT INTO test2 VALUES (’too long’::varchar(5)); —-- explicit truncation
SELECT b, char_length(b) FROM test2;
b | char_length
_______ o
ok | 2
good | 5
too 1 | 5

©® The char_length function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8-5. The name type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use by
the general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator) but
should be referenced using the constant NAMEDATALEN in C source code. The length is set at compile
time (and is therefore adjustable for special uses); the default maximum length might change in a

127

Chapter 8. Data Types

future release. The type "char" (note the quotes) is different from char (1) in that it only uses one
byte of storage. It is internally used in the system catalogs as a simplistic enumeration type.

Table 8-5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
name 64 bytes internal type for object names

8.4. Binary Data Types

The bytea data type allows storage of binary strings; see Table 8-6.

Table 8-6. Binary Data Types

Name Storage Size Description

bytea 1 or 4 bytes plus the actual variable-length binary string
binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character
strings in two ways. First, binary strings specifically allow storing octets of value zero and other
“non-printable” octets (usually, octets outside the decimal range 32 to 126). Character strings disallow
zero octets, and also disallow any other octet values and sequences of octet values that are invalid
according to the database’s selected character set encoding. Second, operations on binary strings
process the actual bytes, whereas the processing of character strings depends on locale settings. In
short, binary strings are appropriate for storing data that the programmer thinks of as “raw bytes”,
whereas character strings are appropriate for storing text.

The bytea type supports two formats for input and output: “hex” format and PostgreSQL’s historical
“escape” format. Both of these are always accepted on input. The output format depends on the
configuration parameter bytea_output; the default is hex. (Note that the hex format was introduced in
PostgreSQL 9.0; earlier versions and some tools don’t understand it.)

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT.
The input format is different from bytea, but the provided functions and operators are mostly the
same.

8.4.1. bytea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first.
The entire string is preceded by the sequence \x (to distinguish it from the escape format). In some
contexts, the initial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input,
the hexadecimal digits can be either upper or lower case, and whitespace is permitted between digit
pairs (but not within a digit pair nor in the starting \ x sequence). The hex format is compatible with a
wide range of external applications and protocols, and it tends to be faster to convert than the escape
format, so its use is preferred.

Example:

SELECT ’\xDEADBEEF’;

128

Chapter 8. Data Types

8.4.2. bytea Escape Format

The “escape” format is the traditional PostgreSQL format for the bytea type. It takes the approach
of representing a binary string as a sequence of ASCII characters, while converting those bytes that
cannot be represented as an ASCII character into special escape sequences. If, from the point of
view of the application, representing bytes as characters makes sense, then this representation can be
convenient. But in practice it is usually confusing because it fuzzes up the distinction between binary
strings and character strings, and also the particular escape mechanism that was chosen is somewhat
unwieldy. Therefore, this format should probably be avoided for most new applications.

When entering bytea values in escape format, octets of certain values must be escaped, while all
octet values can be escaped. In general, to escape an octet, convert it into its three-digit octal value and
precede it by a backslash. Backslash itself (octet decimal value 92) can alternatively be represented
by double backslashes. Table 8-7 shows the characters that must be escaped, and gives the alternative
escape sequences where applicable.

Table 8-7. bytea Literal Escaped Octets

Decimal Octet | Description Escaped Input | Example Hex
Value Representation Representation
0 zero octet "\000" SELECT \x00
"\000’ : :bytea;
39 single quote 77 or ' \047" SELECT \x27
" tbytea;
92 backslash "\\’" or “\134’ |SELECT \x5¢
"\\’ ::bytea;
0to 31 and 127 to | “non-printable” "\xxx’ (octal SELECT \x01
255 octets value) "\001’ : :bytea;

The requirement to escape non-printable octets varies depending on locale settings. In some instances
you can get away with leaving them unescaped.

The reason that single quotes must be doubled, as shown in Table 8-7, is that this is true for any string
literal in a SQL command. The generic string-literal parser consumes the outermost single quotes and
reduces any pair of single quotes to one data character. What the bytea input function sees is just
one single quote, which it treats as a plain data character. However, the bytea input function treats
backslashes as special, and the other behaviors shown in Table 8-7 are implemented by that function.

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Bytea octets are output in hex format by default. If you change bytea_output to escape, “non-
printable” octets are converted to their equivalent three-digit octal value and preceded by one back-
slash. Most “printable” octets are output by their standard representation in the client character set,

e.g.

SET bytea_output = ’'escape’;

129

SELECT "abc \153\154\155 \052\251\124’ : :bytea;

bytea

abc klm *\251T

Chapter 8. Data Types

The octet with decimal value 92 (backslash) is doubled in the output. Details are in Table 8-8.

Table 8-8. bytea Output Escaped Octets

Decimal Octet | Description Escaped Example Output Result
Value Output

Representation
92 backslash AN\ SELECT AN\

"\134’ ::bytea;

0to 31 and 127 to | “non-printable” \xxx (octal value) | SELECT \001
255 octets ’\001’ : :bytea;
32t0 126 “printable” octets | client character SELECT ~

set representation |’ \176’ : :bytea;

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms of
escaping and unescaping bytea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8-9. The operations avail-
able on these data types are described in Section 9.9. Dates are counted according to the Gregorian
calendar, even in years before that calendar was introduced (see Section B.6 for more information).

Table 8-9. Date/Time Types

Name Storage Size | Description |Low Value High Value |Resolution
timestamp [|8 bytes both date and [4713 BC 294276 AD 1 microsecond
(p) 1 I time (no time / 14 digits
without zone)
time zone]
timestamp [|8 bytes both date and | 4713 BC 294276 AD 1 microsecond
(p)] with time, with time / 14 digits
time zone zone
date 4 bytes date (no time |4713 BC 5874897 AD |1 day

of day)

130

Chapter 8. Data Types

Name Storage Size | Description |Low Value High Value |Resolution
time [(p) |8 bytes time of day (no | 00:00:00 24:00:00 1 microsecond
] [without date) / 14 digits

time zone]

time [(p) 12 bytes times of day 00:00:00+1559 | 24:00:00-1559 | 1 microsecond
] with time only, with time / 14 digits
zone zone

interval [|16 bytes time interval | -178000000 178000000 1 microsecond
fields 1 [years years / 14 digits

(p) 1]

Note: The SQL standard requires that writing just timestamp be equivalent to timestamp
without time zone, and PostgreSQL honors that behavior. timestamptz is accepted as an
abbreviation for timestamp with time zone; this is a PostgreSQL extension.

time, timestamp, and interval accept an optional precision value p which specifies the number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision.
The allowed range of p is from O to 6 for the t imestamp and interval types.

Note: When t imestamp values are stored as eight-byte integers (currently the default), microsec-
ond precision is available over the full range of values. When timestamp values are stored as
double precision floating-point numbers instead (a deprecated compile-time option), the effective
limit of precision might be less than 6. timestamp values are stored as seconds before or after
midnight 2000-01-01. When timestamp values are implemented using floating-point numbers,
microsecond precision is achieved for dates within a few years of 2000-01-01, but the precision
degrades for dates further away. Note that using floating-point datetimes allows a larger range of
timestamp values to be represented than shown above: from 4713 BC up to 5874897 AD.

The same compile-time option also determines whether time and interval values are stored
as floating-point numbers or eight-byte integers. In the floating-point case, large interval values
degrade in precision as the size of the interval increases.

For the time types, the allowed range of p is from 0 to 6 when eight-byte integer storage is used, or
from O to 10 when floating-point storage is used.

The interval type has an additional option, which is to restrict the set of stored fields by writing
one of these phrases:

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND

131

Chapter 8. Data Types

MINUTE TO SECOND

Note that if both fields and p are specified, the fields must include SECOND, since the precision
applies only to the seconds.

The type time with time zone is defined by the SQL standard, but the definition exhibits
properties which lead to questionable usefulness. In most cases, a combination of date, time,
timestamp without time zone, and timestamp with time zone should provide a
complete range of date/time functionality required by any application.

The types abstime and reltime are lower precision types which are used internally. You are dis-
couraged from using these types in applications; these internal types might disappear in a future
release.

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601,
SQL-compatible, traditional POSTGRES, and others. For some formats, ordering of day, month, and
year in date input is ambiguous and there is support for specifying the expected ordering of these
fields. Set the DateStyle parameter to MDY to select month-day-year interpretation, DMY to select
day-month-year interpretation, or YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Ap-
pendix B for the exact parsing rules of date/time input and for the recognized text fields including
months, days of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p) 1 'value’

where p is an optional precision specification giving the number of fractional digits in the seconds
field. Precision can be specified for t ime, t imestamp, and interval types. The allowed values are
mentioned above. If no precision is specified in a constant specification, it defaults to the precision of
the literal value.

8.5.1.1. Dates

Table 8-10 shows some possible inputs for the date type.

Table 8-10. Date Input

Example Description

1999-01-08 ISO 8601; January 8 in any mode
(recommended format)

January 8, 1999 unambiguous in any datestyle input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003

in DMY mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

132

Chapter 8. Data Types

Example Description

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error
08-Jan-99 January 8, except error in YMD mode
Jan-08-99 January 8, except error in YMD mode
19990108 ISO 8601; January 8, 1999 in any mode
990108 ISO 8601; January 8, 1999 in any mode
1999.008 year and day of year

J2451187 Julian date

January 8, 99 BC year 99 BC

8.5.1.2. Times

Thetime-of—daytypesaretime [(p)] without time zoneandtime [(p)] with time
zone. time alone is equivalent to time without time zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8-11
and Table 8-12.) If a time zone is specified in the input for time without time zone, itis silently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name
that involves a daylight-savings rule, such as America/New_York. In this case specifying the date
is required in order to determine whether standard or daylight-savings time applies. The appropriate
time zone offset is recorded in the time with time zone value.

Table 8-11. Time Input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value
04:05 PM same as 16:05; input hour must be <= 12
04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST time zone specified by abbreviation
2003-04-12 04:05:06 America/New_York |time zone specified by full name

Table 8-12. Time Zone Input

Example Description
PST Abbreviation (for Pacific Standard Time)

133

Chapter 8. Data Types

Example Description

America/New_York Full time zone name

PST8PDT POSIX-style time zone specification
-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC

z Short form of zulu

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by
an optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the
time zone, but this is not the preferred ordering.) Thus:

1999-01-08 04:05:06

and:

1999-01-08 04:05:06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the common format:
January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiates t imestamp without time zone and timestamp with time
zone literals by the presence of a “+” or “-” symbol and time zone offset after the time. Hence,
according to the standard,

TIMESTAMP ’'2004-10-19 10:23:54'

isatimestamp without time zone, while

TIMESTAMP "2004-10-19 10:23:54+02’

isatimestamp with time zone.PostgreSQL never examines the content of a literal string before
determining its type, and therefore will treat both of the above as t imestamp without time zone.
To ensure that a literal is treated as t imestamp with time zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE ’2004-10-19 10:23:54+02'

In a literal that has been determined to be timestamp without time zone, PostgreSQL will
silently ignore any time zone indication. That is, the resulting value is derived from the date/time
fields in the input value, and is not adjusted for time zone.

For timestamp with time zone, the internally stored value is always in UTC (Universal Coordi-
nated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit
time zone specified is converted to UTC using the appropriate offset for that time zone. If no time
zone is stated in the input string, then it is assumed to be in the time zone indicated by the system’s
TimeZone parameter, and is converted to UTC using the offset for the t imezone zone.

134

Chapter 8. Data Types

When a timestamp with time zone value is output, it is always converted from UTC to the
current timezone zone, and displayed as local time in that zone. To see the time in another time
zone, either change t imezone or use the AT TIME ZONE construct (see Section 9.9.3).

Conversions between timestamp without time zone and timestamp with time zone
normally assume that the timestamp without time zone value should be taken or given as
timezone local time. A different time zone can be specified for the conversion using AT TIME
ZONE.

8.5.1.4. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown in Table 8-13.
The values infinity and -infinity are specially represented inside the system and will be dis-
played unchanged; but the others are simply notational shorthands that will be converted to ordinary
date/time values when read. (In particular, now and related strings are converted to a specific time
value as soon as they are read.) All of these values need to be enclosed in single quotes when used as
constants in SQL commands.

Table 8-13. Special Date/Time Inputs

Input String Valid Types Description

epoch date, timestamp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity date, timestamp later than all other time stamps

—infinity date, timestamp earlier than all other time
stamps

now date, time, timestamp current transaction’s start time

today date, timestamp midnight (00:00) today

tomorrow date, timestamp midnight (00:00) tomorrow

yesterday date, timestamp midnight (00:00) yesterday

allballs time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME,
LOCALTIMESTAMP. (See Section 9.9.4.) Note that these are SQL functions and are not recognized in
data input strings.

Caution

While the input strings now, today, tomorrow, and yesterday are fine to use in
interactive SQL commands, they can have surprising behavior when the com-
mand is saved to be executed later, for example in prepared statements, views,
and function definitions. The string can be converted to a specific time value
that continues to be used long after it becomes stale. Use one of the SQL func-
tions instead in such contexts. For example, CURRENT_DATE + 1 is safer than

"tomorrow’ : :date.

135

Chapter 8. Data Types

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL
standard requires the use of the ISO 8601 format. The name of the “SQL” output format is a historical
accident.) Table 8-14 shows examples of each output style. The output of the date and t ime types is
generally only the date or time part in accordance with the given examples. However, the POSTGRES
style outputs date-only values in ISO format.

Table 8-14. Date/Time Output Styles

Style Specification Description Example

IS0 ISO 8601, SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00
PST

Postgres original style Wed Dec 17 07:37:16
1997 PST

German regional style 17.12.1997 07:37:16.00
PST

Note: ISO 8601 specifies the use of uppercase letter T to separate the date and time. PostgreSQL
accepts that format on input, but on output it uses a space rather than 1, as shown above. This is
for readability and for consistency with RFC 3339 as well as some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been spec-
ified, otherwise month appears before day. (See Section 8.5.1 for how this setting also affects inter-
pretation of input values.) Table 8-15 shows examples.

Table 8-15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day/monthlyear 17/12/1997 15:37:16.00
CET

SQL, MDY monthl/daylyear 12/17/1997 07:37:16.00
PST

Postgres, DMY day/monthlyear Wed 17 Dec 07:37:16
1997 PST

The date/time style can be selected by the user using the SET datestyle command, the DateStyle
parameter in the postgresqgl.conf configuration file, or the PGDATESTYLE environment variable
on the server or client.

The formatting function to_char (see Section 9.8) is also available as a more flexible way to format
date/time output.

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be

136

Chapter 8. Data Types

prone to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the
widely-used IANA (Olson) time zone database for information about historical time zone rules. For
times in the future, the assumption is that the latest known rules for a given time zone will continue
to be observed indefinitely far into the future.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

« Although the date type cannot have an associated time zone, the t ime type can. Time zones in the
real world have little meaning unless associated with a date as well as a time, since the offset can
vary through the year with daylight-saving time boundaries.

+ The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We do not recommend using the type time with time zone (though it
is supported by PostgreSQL for legacy applications and for compliance with the SQL standard).
PostgreSQL assumes your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in
the zone specified by the TimeZone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

« A full time zone name, for example America/New_York. The recognized time zone names are
listed in the pg_timezone_names view (see Section 50.80). PostgreSQL uses the widely-used
TANA time zone data for this purpose, so the same time zone names are also recognized by other
software.

« A time zone abbreviation, for example PST. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition
rules as well. The recognized abbreviations are listed in the pg_timezone_abbrevs view (see
Section 50.79). You cannot set the configuration parameters TimeZone or log_timezone to a time
zone abbreviation, but you can use abbreviations in date/time input values and with the AT TIME
ZONE operator.

«+ In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time
zone specifications, as described in Section B.5. This option is not normally preferable to using a
named time zone, but it may be necessary if no suitable JANA time zone entry is available.

In short, this is the difference between abbreviations and full names: abbreviations represent a specific
offset from UTC, whereas many of the full names imply a local daylight-savings time rule, and so have
two possible UTC offsets. As an example, 2014-06-04 12:00 America/New_York represents
noon local time in New York, which for this particular date was Eastern Daylight Time (UTC-4). So
2014-06-04 12:00 EDT specifies that same time instant. But 2014-06-04 12:00 EST specifies
noon Eastern Standard Time (UTC-5), regardless of whether daylight savings was nominally in effect
on that date.

To complicate matters, some jurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MSK has meant UTC+3 in some years and
UTC+4 in others. PostgreSQL interprets such abbreviations according to whatever they meant (or had
most recently meant) on the specified date; but, as with the EST example above, this is not necessarily
the same as local civil time on that date.

137

Chapter 8. Data Types

In all cases, timezone names and abbreviations are recognized case-insensitively. (This is a change
from PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from
configuration files stored under . ../share/timezone/ and .../share/timezonesets/ of the
installation directory (see Section B.4).

The TimeZone configuration parameter can be set in the file postgresgl.conf, or in any of the
other standard ways described in Chapter 19. There are also some special ways to set it:

« The SQL command SET TIME ZONE sets the time zone for the session. This is an alternative
spelling of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

« The pPGTZ environment variable is used by libpq clients to send a SET TIME ZONE command to
the server upon connection.

8.5.4. Interval Input

interval values can be written using the following verbose syntax:
[Q] quantity unit [quantity unit...] [direction]

where quantity is a number (possibly signed); unit is microsecond, millisecond, second,
minute, hour, day, week, month, year, decade, century, millennium, or abbreviations or plu-
rals of these units; direction can be ago or empty. The at sign (@) is optional noise. The amounts
of the different units are implicitly added with appropriate sign accounting. ago negates all the fields.
This syntax is also used for interval output, if IntervalStyle is set to postgres_verbose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example, 1 12:59:10" is read the same as 1 day 12 hours 59 min 10 sec’. Also, a com-
bination of years and months can be specified with a dash; for example / 200-10" is read the same
as 200 years 10 months’. (These shorter forms are in fact the only ones allowed by the SQL
standard, and are used for output when IntervalStyle is setto sql_standard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with designa-
tors” of the standard’s section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format with
designators looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with a P, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8-16. Units may be omitted, and may be specified in any order,
but units smaller than a day must appear after T. In particular, the meaning of M depends on whether
it is before or after T.

Table 8-16. ISO 8601 Interval Unit Abbreviations

Abbreviation Meaning

Y Years

M Months (in the date part)
w Weeks

D Days

138

Chapter 8. Data Types

Abbreviation Meaning

H Hours

M Minutes (in the time part)
S Seconds

In the alternative format:
P [years—months—days] [T hours:minutes:seconds |

the string must begin with P, and a T separates the date and time parts of the interval. The values are
given as numbers similar to ISO 8601 dates.

When writing an interval constant with a fields specification, or when assigning a string to an in-
terval column that was defined with a £ields specification, the interpretation of unmarked quantities
depends on the fields. For example INTERVAL ’1’ YEAR is read as 1 year, whereas INTERVAL
71’ means 1 second. Also, field values “to the right” of the least significant field allowed by the
fields specification are silently discarded. For example, writing INTERVAL ’1 day 2:03:04'
HOUR TO MINUTE results in dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading
negative sign applies to all fields; for example the negative sign in the interval literal * -1 2:03:04"
applies to both the days and hour/minute/second parts. PostgreSQL allows the fields to have differ-
ent signs, and traditionally treats each field in the textual representation as independently signed, so
that the hour/minute/second part is considered positive in this example. If IntervalStyle is set
to sql_standard then a leading sign is considered to apply to all fields (but only if no additional
signs appear). Otherwise the traditional PostgreSQL interpretation is used. To avoid ambiguity, it’s
recommended to attach an explicit sign to each field if any field is negative.

In the verbose input format, and in some fields of the more compact input formats, field values can
have fractional parts; for example ’ 1.5 week’ or 01:02:03.45”. Such input is converted to the
appropriate number of months, days, and seconds for storage. When this would result in a fractional
number of months or days, the fraction is added to the lower-order fields using the conversion factors
1 month = 30 days and 1 day = 24 hours. For example, ' 1.5 month’ becomes 1 month and 15 days.
Only seconds will ever be shown as fractional on output.

Table 8-17 shows some examples of valid interval input.

Table 8-17. Interval Input

Example Description

1-2 SQL standard format: 1 year 2 months

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes
6 seconds

1 year 2 months 3 days 4 hours 5 minutes 6 Traditional Postgres format: 1 year 2 months 3

seconds days 4 hours 5 minutes 6 seconds

P1Y2M3DT4H5M6S ISO 8601 “format with designators™: same
meaning as above

P0001-02-03T04:05:06 ISO 8601 “alternative format”: same meaning as
above

Internally interval values are stored as months, days, and seconds. This is done because the number
of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment is
involved. The months and days fields are integers while the seconds field can store fractions. Because

139

Chapter 8. Data Types

intervals are usually created from constant strings or timestamp subtraction, this storage method
works well in most cases, but can cause unexpected results:

SELECT EXTRACT (hours from ’80 minutes’
date_part

::interval);

SELECT EXTRACT (days from ’80 hours’
date_part

::interval);

Functions justify_days and justify_hours are available for adjusting days and hours that over-
flow their normal ranges.

8.5.5. Interval Output

The output format of the interval type can be set to one of the four styles sql_standard, postgres,
postgres_verbose, or iso_8601, using the command SET intervalstyle. The default is the
postgres format. Table 8-18 shows examples of each output style.

The sql_standard style produces output that conforms to the SQL standard’s specification for
interval literal strings, if the interval value meets the standard’s restrictions (either year-month only or
day-time only, with no mixing of positive and negative components). Otherwise the output looks like
a standard year-month literal string followed by a day-time literal string, with explicit signs added to
disambiguate mixed-sign intervals.

The output of the postgres style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to ISO.

The output of the postgres_verbose style matches the output of PostgreSQL releases prior to 8.4
when the DateStyle parameter was set to non-ISO output.

The output of the iso_8601 style matches the “format with designators” described in section 4.4.3.2
of the ISO 8601 standard.

Table 8-18. Interval Output Style Examples

Style Specification

Year-Month Interval

Day-Time Interval

Mixed Interval

sgl_standard

1-2

3 4:05:06

-1-2 43 -4:05:06

postgres

1 year 2 mons

3 days 04:05:06

-1 year -2 mons +3
days -04:05:06

postgres_verbose

@ 1 year 2 mons

@ 3 days 4 hours 5

@ 1 year 2 mons -3

mins 6 secs days 4 hours 5 mins 6
secs ago
iso_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-

6S

140

Chapter 8. Data Types

8.6. Boolean Type

PostgreSQL provides the standard SQL type boolean; see Table 8-19. The boolean type can have
several states: “true”, “false”, and a third state, “unknown”, which is represented by the SQL null
value.

Table 8-19. Boolean Data Type

Name Storage Size Description

boolean 1 byte state of true or false

Boolean constants can be represented in SQL queries by the SQL key words TRUE, FALSE, and NULL.

The datatype input function for type boolean accepts these string representations for the “true”
state:

true
yes
on

1

and these representations for the “false” state:
false
no

off
0

Unique prefixes of these strings are also accepted, for example t or n. Leading or trailing whitespace
is ignored, and case does not matter.

The datatype output function for type boolean always emits either t or £, as shown in Example 8-2.

Example 8-2. Using the boolean Type

CREATE TABLE testl (a boolean, b text);
INSERT INTO testl VALUES (TRUE, ’sic est’);
INSERT INTO testl VALUES (FALSE, ’'non est’);
SELECT » FROM testl;

a | b
t | sic est

The key words TRUE and FALSE are the preferred (SQL-compliant) method for writing Boolean con-
stants in SQL queries. But you can also use the string representations by following the generic string-
literal constant syntax described in Section 4.1.2.7, for example ’ yes’ : :boolean.

Note that the parser automatically understands that TRUE and FALSE are of type boolean, but this
is not so for NULL because that can have any type. So in some contexts you might have to cast NULL
to boolean explicitly, for example NULL: :boolean. Conversely, the cast can be omitted from a

141

Chapter 8. Data Types

string-literal Boolean value in contexts where the parser can deduce that the literal must be of type
boolean.

8.7. Enumerated Types

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equiv-
alent to the enum types supported in a number of programming languages. An example of an enum
type might be the days of the week, or a set of status values for a piece of data.

8.7.1. Declaration of Enumerated Types
Enum types are created using the CREATE TYPE command, for example:

CREATE TYPE mood AS ENUM (’sad’, ’ok’, ’'happy’);

Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE mood AS ENUM (’sad’, ’ok’, ’happy’);
CREATE TABLE person (
name text,
current_mood mood
)i
INSERT INTO person VALUES (’Moe’, ’happy’);

SELECT x FROM person WHERE current_mood = "happy’;
name | current_mood

______ b

Moe | happy

(1 row)

8.7.2. Ordering

The ordering of the values in an enum type is the order in which the values were listed when the
type was created. All standard comparison operators and related aggregate functions are supported
for enums. For example:

INSERT INTO person VALUES (’'Larry’, ’'sad’);
INSERT INTO person VALUES (’Curly’, ’'ok’);
SELECT x FROM person WHERE current_mood > ’'sad’;

name | current_mood
,,,,,,, .
Moe | happy

Curly | ok

(2 rows)

SELECT = FROM person WHERE current_mood > ’'sad’ ORDER BY current_mood;
name | current_mood
,,,,,,, U,

Curly | ok
Moe | happy
(2 rows)

142

Chapter 8. Data Types

SELECT name

FROM person

WHERE current_mood = (SELECT MIN (current_mood) FROM person);
name

8.7.3. Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types. See this
example:

CREATE TYPE happiness AS ENUM (’happy’, ’very happy’, ’ecstatic’);
CREATE TABLE holidays (

num_weeks integer,

happiness happiness
)i
INSERT INTO holidays (num_weeks, happiness) VALUES (4, ’'happy’);
INSERT INTO holidays (num_weeks, happiness) VALUES (6, ’very happy’);
INSERT INTO holidays (num_weeks, happiness) VALUES (8, ’‘ecstatic’);
INSERT INTO holidays (num_weeks,happiness) VALUES (2, ’'sad’);
ERROR: invalid input value for enum happiness: "sad"
SELECT person.name, holidays.num_weeks FROM person, holidays

WHERE person.current_mood = holidays.happiness;

ERROR: operator does not exist: mood = happiness

If you really need to do something like that, you can either write a custom operator or add explicit
casts to your query:

SELECT person.name, holidays.num_weeks FROM person, holidays
WHERE person.current_mood::text = holidays.happiness::text;
name | num_weeks

8.7.4. Implementation Details

Enum labels are case sensitive, so happy’ is not the same as ' HAPPY’ . White space in the labels is
significant too.

Although enum types are primarily intended for static sets of values, there is support for adding new
values to an existing enum type, and for renaming values (see ALTER TYPE). Existing values cannot
be removed from an enum type, nor can the sort ordering of such values be changed, short of dropping
and re-creating the enum type.

143

Chapter 8. Data Types
An enum value occupies four bytes on disk. The length of an enum value’s textual label is limited by
the NAMEDATALEN setting compiled into PostgreSQL; in standard builds this means at most 63 bytes.

The translations from internal enum values to textual labels are kept in the system catalog pg_enum.
Querying this catalog directly can be useful.

8.8. Geometric Types

Geometric data types represent two-dimensional spatial objects. Table 8-20 shows the geometric types
available in PostgreSQL.

Table 8-20. Geometric Types

Name Storage Size Description Representation

point 16 bytes Point on a plane x,y)

line 32 bytes Infinite line {AB,C}

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to | ((x1,yl),...)
polygon)

path 16+16n bytes Open path [(x1,y1),...]

polygon 40+16n bytes Polygon (similar to (xL,yD),...)
closed path)

circle 24 bytes Circle <(x,y),r> (center point

and radius)

A rich set of functions and operators is available to perform various geometric operations such as
scaling, translation, rotation, and determining intersections. They are explained in Section 9.11.

8.8.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values of type point
are specified using either of the following syntaxes:

(x, vyv)
X 7 Y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

8.8.2. Lines

Lines are represented by the linear equation Ax + By + ¢ =0, where A and B are not both zero. Values
of type 1ine are input and output in the following form:

{ 4 B, C}

Alternatively, any of the following forms can be used for input:

144

Chapter 8. Data Types

[(xI, y1) , (x2, y2) 1]
((x1, y1) , (x2, y2))
(x1, y1) , (%2, y2)
x1 , vyl , x2 , y2

where (x1, y1) and (x2, y2) are two different points on the line.

8.8.3. Line Segments

Line segments are represented by pairs of points that are the endpoints of the segment. Values of type
1seg are specified using any of the following syntaxes:

[(xI, y1) , (x2, y2)]
((x1, y1) , (x2, y2))
(x1, y1) , (x2, y2)
x1 , vyl ’ x2 , y2

where (x1,y1) and (x2, y2) are the end points of the line segment.

Line segments are output using the first syntax.

8.8.4. Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1, y1) , (x2, y2))
(x1 , y1) , (x2, y2)
x1 , vyl , x2 4, y2

where (x1,y1) and (x2, y2) are any two opposite corners of the box.
Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store
the upper right and lower left corners, in that order.

8.8.5. Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last points
in the list are considered not connected, or closed, where the first and last points are considered
connected.

Values of type path are specified using any of the following syntaxes:

[(x1 , y1) , ... , (xn , yn)]
((x1, y1) , «.. , (xn , yn))
(x1 , y1) , .. , (xn , yn)

(x1 , yl ;e xn , yn)
x1 , yl ;e g xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([1)
indicate an open path, while parentheses (()) indicate a closed path. When the outermost parentheses
are omitted, as in the third through fifth syntaxes, a closed path is assumed.

145

Chapter 8. Data Types

Paths are output using the first or second syntax, as appropriate.

8.8.6. Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

Values of type polygon are specified using any of the following syntaxes:

((x1, y1) , «.. , (xn , yn))
(x1 , y1) , .. , (xn , yn)
(x1 , yl ;e xn , yn)
x1 , yl ;e g xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

8.8.7. Circles

Circles are represented by a center point and radius. Values of type circle are specified using any of
the following syntaxes:

< (x , vy r >
((x, v), r)
(x, vy r
X 4 Yy r

where (x, y) is the center point and r is the radius of the circle.

Circles are output using the first syntax.

8.9. Network Address Types

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8-21. It is
better to use these types instead of plain text types to store network addresses, because these types
offer input error checking and specialized operators and functions (see Section 9.12).

Table 8-21. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

inet 7 or 19 bytes IPv4 and IPv6 hosts and
networks

macaddr 6 bytes MAC addresses

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6 addresses, in-
cluding IPv4 addresses encapsulated or mapped to IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

146

8.9.1. inet

Chapter 8. Data Types

The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all in one field. The sub-
net is represented by the number of network address bits present in the host address (the “netmask”).
If the netmask is 32 and the address is [Pv4, then the value does not indicate a subnet, only a single
host. In IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you
want to accept only networks, you should use the cidr type rather than inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the
number of bits in the netmask. If the /y portion is missing, the netmask is 32 for IPv4 and 128 for
IPv6, so the value represents just a single host. On display, the /y portion is suppressed if the netmask

specifies a single host.

8.9.2. cidr

The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Class-

less Internet Domain Routing conventions. The format for specifying networks is address/y where

address is the network represented as an IPv4 or IPv6 address, and y is the number of bits in the

netmask. If y is omitted, it is calculated using assumptions from the older classful network numbering

system, except it will be at least large enough to include all of the octets written in the input. It is an
error to specify a network address that has bits set to the right of the specified netmask.

Table 8-22 shows some examples.

Table 8-22. cidr Type Input Examples

|

cidr Input cidr Output abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24

128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4£8:3:ba::/64 2001:4£8:3:ba::/64 2001:4f8:3:ba::/64
2001:4£8:3:ba:2e0:811f:fe22:d 1{]1 2AMB1 :4£8:3:ba:2e0:81{f:fe22:d 1 {1 AMBl :4£8:3:ba:2e0:81{f:fe22:d 1
::ffff:1.2.3.0/120 +ffff:1.2.3.0/120 offff:1.2.3/120
:offff:1.2.3.0/128 +ffff:1.2.3.0/128 :offff:1.2.3.0/128

8.9.3. inet VS. cidr

The essential difference between inet and cidr data types is that inet accepts values with nonzero

147

Chapter 8. Data Types

bits to the right of the netmask, whereas cidr does not.

Tip: If you do not like the output format for inet or cidr values, try the functions host, text, and
abbrev.

8.9.4. macaddr

The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following
formats:

708:00:2b:01:02:03"
"08-00-2b-01-02-03"
708002b:010203"
708002b-010203"
0800.2b01.0203"
0800-2b01-0203"
708002b010203"

These examples would all specify the same address. Upper and lower case is accepted for the digits a
through £. Output is always in the first of the forms shown.

IEEE Std 802-2001 specifies the second shown form (with hyphens) as the canonical form for MAC
addresses, and specifies the first form (with colons) as the bit-reversed notation, so that 08-00-2b-01-
02-03 = 01:00:4D:08:04:0C. This convention is widely ignored nowadays, and it is relevant only for
obsolete network protocols (such as Token Ring). PostgreSQL makes no provisions for bit reversal,
and all accepted formats use the canonical LSB order.

The remaining five input formats are not part of any standard.

8.10. Bit String Types

Bit strings are strings of 1’s and 0’s. They can be used to store or visualize bit masks. There are two
SQL bit types: bit (n) and bit varying (n), Where n is a positive integer.

bit type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum length n; longer strings will be
rejected. Writing bi t without a length is equivalenttobit (1), whilebit varying without alength
specification means unlimited length.

Note: If one explicitly casts a bit-string value to bit (n), it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value
tobit varying (n), it will be truncated on the right if it is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; see Section 9.6.

148

Chapter 8. Data Types

Example 8-3. Using the Bit String Types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B’101’, B’00");

INSERT INTO test VALUES (B’10’, B’"1017);

ERROR: Dbit string length 2 does not match type bit (3)
INSERT INTO test VALUES (B’10’::bit(3), B’101");
SELECT * FROM test;

a | b
_____ b
101 | 00
100 | 101

A bit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section
8.3 for character strings).

8.11. Text Search Types

PostgreSQL provides two data types that are designed to support full text search, which is the activity
of searching through a collection of natural-language documents to locate those that best match a
query. The tsvector type represents a document in a form optimized for text search; the tsquery
type similarly represents a text query. Chapter 12 provides a detailed explanation of this facility, and
Section 9.13 summarizes the related functions and operators.

8.11.1. tsvector

A tsvector value is a sorted list of distinct lexemes, which are words that have been normalized
to merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-
elimination are done automatically during input, as shown in this example:

SELECT "a fat cat sat on a mat and ate a fat rat’::tsvector;
tsvector

"a’ "and’ ’'ate’ ’cat’ ’fat’ ’'mat’ ’'on’ ’'rat’ ’sat’

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT Sthe lexeme ' ! contains spaces$$::tsvector;
tsvector
! " ’contains’ ’lexeme’ ’spaces’ ’'the’

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having
to double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT $$the lexeme ’Joe”s’ contains a quote$$::tsvector;

tsvector

"Joe”s’ ’'a’' ’'contains’ ’lexeme’ ’quote’ ’‘the’

Optionally, integer positions can be attached to lexemes:

SELECT ’"a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12’::tsvector;

149

Chapter 8. Data Types

tsvector

"a’:1,6,10 "and’ :8 "ate’:9 'cat’:3 ’'fat’:2,11 'mat’:7 ’'on’:5 ’'rat’:12 ’'sat’:4

A position normally indicates the source word’s location in the document. Positional information can
be used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently
set to 16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be a, B, C, or D. D is the
default and hence is not shown on output:

SELECT ’"a:1A fat:2B,4C cat:5D’::tsvector;
tsvector

"a’ :1A ’'cat’:5 ’fat’ :2B,4C

Weights are typically used to reflect document structure, for example by marking title words differ-
ently from body words. Text search ranking functions can assign different priorities to the different
weight markers.

It is important to understand that the t svector type itself does not perform any word normalization;
it assumes the words it is given are normalized appropriately for the application. For example,

SELECT ’'The Fat Rats’ ::tsvector;
tsvector

"Fat’ ’'Rats’ ’'The’

For most English-text-searching applications the above words would be considered non-normalized,
but t svector doesn’t care. Raw document text should usually be passed through to_tsvector to
normalize the words appropriately for searching:

SELECT to_tsvector (’english’, ’The Fat Rats’);
to_tsvector

"fat’:2 ’'rat’:3

Again, see Chapter 12 for more detail.

8.11.2. tsquery

A tsquery value stores lexemes that are to be searched for, and can combine them using the Boolean
operators & (AND), | (OR), and ! (NOT), as well as the phrase search operator <-> (FOLLOWED
BY). There is also a variant <n> of the FOLLOWED BY operator, where N is an integer constant
that specifies the distance between the two lexemes being searched for. <-> is equivalent to <1>.

Parentheses can be used to enforce grouping of these operators. In the absence of parentheses, !
(NOT) binds most tightly, <-> (FOLLOWED BY) next most tightly, then & (AND), with | (OR)
binding the least tightly.

Here are some examples:

SELECT ’"fat & rat’::tsquery;
tsquery

150

Chapter 8. Data Types

SELECT ’fat & (rat | cat)’::tsquery;
tsquery

SELECT "fat & rat & ! cat’::tsquery;
tsquery

"fat’ & 'rat’ & !’'cat’

Optionally, lexemes in a tsquery can be labeled with one or more weight letters, which restricts
them to match only tsvector lexemes with one of those weights:

SELECT ’fat:ab & cat’::tsquery;
tsquery

Also, lexemes in a t squery can be labeled with « to specify prefix matching:

SELECT ’super:*’::tsquery;
tsquery

This query will match any word in a t svector that begins with “super”.

Quoting rules for lexemes are the same as described previously for lexemes in t svector; and, as with
tsvector, any required normalization of words must be done before converting to the t squery type.
The to_tsquery function is convenient for performing such normalization:

SELECT to_tsquery(’'Fat:ab & Cats’);
to_tsquery

"fat’ :AB & ’cat’

Note that to_tsquery will process prefixes in the same way as other words, which means this com-
parison returns true:

SELECT to_tsvector('postgraduate’) @@ to_tsquery('postgres:x’);

?column?

because postgres gets stemmed to postgr:

SELECT to_tsvector(’"postgraduate’), to_tsquery(’'postgres:*’);
to_tsvector | to_tsquery

_______________ +____________

"postgradu’ :1 | ’'postgr’ :x

which will match the stemmed form of postgraduate.

151

Chapter 8. Data Types

8.12. UUID Type

The data type uuid stores Universally Unique Identifiers (UUID) as defined by RFC 4122, ISO/IEC
9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique identi-
fier, or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm chosen
to make it very unlikely that the same identifier will be generated by anyone else in the known uni-
verse using the same algorithm. Therefore, for distributed systems, these identifiers provide a better
uniqueness guarantee than sequence generators, which are only unique within a single database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by
hyphens, specifically a group of 8 digits followed by three groups of 4 digits followed by a group of
12 digits, for a total of 32 digits representing the 128 bits. An example of a UUID in this standard
form is:

aleebc99-9c0b-4ef8-bb6d-6bb9%d380all

PostgreSQL also accepts the following alternative forms for input: use of upper-case digits, the stan-
dard format surrounded by braces, omitting some or all hyphens, adding a hyphen after any group of
four digits. Examples are:

AOEEBC99-9COB-4EF8-BB6D-6BB9BD380A11
{a0eebc99-9c0b-4ef8-bb6d-6bb9bd380all}
al0eebc999c0b4ef8bb6d6bb9bd380all
alee-bc99-9c0b-4ef8-bb6d-6bb9-bd38-0all
{a0eebc99-9c0bdef8-bb6d6bb9-bd380all}

Output is always in the standard form.

PostgreSQL provides storage and comparison functions for UUIDs, but the core database does not
include any function for generating UUIDs, because no single algorithm is well suited for every
application. The uuid-ossp module provides functions that implement several standard algorithms.
The pgcrypto module also provides a generation function for random UUIDs. Alternatively, UUIDs
could be generated by client applications or other libraries invoked through a server-side function.

8.13. XML Type

The xm1 data type can be used to store XML data. Its advantage over storing XML data in a text
field is that it checks the input values for well-formedness, and there are support functions to perform
type-safe operations on it; see Section 9.14. Use of this data type requires the installation to have been
built with configure —-with-libxml.

The xm1 type can store well-formed “documents”, as defined by the XML standard, as well as “con-
tent” fragments, which are defined by reference to the more permissive “document node™' of the
XQuery and XPath data model. Roughly, this means that content fragments can have more than one
top-level element or character node. The expression xmlvalue IS DOCUMENT can be used to evaluate
whether a particular xm1 value is a full document or only a content fragment.

8.13.1. Creating XML Values

To produce a value of type xm1 from character data, use the function xmlparse:

XMLPARSE ({ DOCUMENT | CONTENT } value)

1.

https://www.w3.0org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode

152

Chapter 8. Data Types

Examples:

XMLPARSE (DOCUMENT ’<?xml version="1.0"?><book><title>Manual</title><chapter>...</chapte
XMLPARSE (CONTENT ’abc<foo>bar</foo><bar>foo</bar>")

While this is the only way to convert character strings into XML values according to the SQL standard,
the PostgreSQL-specific syntaxes:

xml ’<foo>bar</foo>’
' <foo>bar</foo>’::xml

can also be used.

The xm1l type does not validate input values against a document type declaration (DTD), even when
the input value specifies a DTD. There is also currently no built-in support for validating against other
XML schema languages such as XML Schema.

The inverse operation, producing a character string value from xm1, uses the function xmlserialize:

XMLSERIALIZE ({ DOCUMENT | CONTENT } value AS type)

type can be character, character varying, or text (or an alias for one of those). Again,
according to the SQL standard, this is the only way to convert between type xm1 and character types,
but PostgreSQL also allows you to simply cast the value.

When a character string value is cast to or from type xml without going through XMLPARSE or
XMLSERIALIZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “XML
option” session configuration parameter, which can be set using the standard command:

SET XML OPTION { DOCUMENT | CONTENT };

or the more PostgreSQL-like syntax

SET xmloption TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in
the XML data passed through them. When using the text mode to pass queries to the server and
query results to the client (which is the normal mode), PostgreSQL converts all character data passed
between the client and the server and vice versa to the character encoding of the respective end; see
Section 23.3. This includes string representations of XML values, such as in the above examples.
This would ordinarily mean that encoding declarations contained in XML data can become invalid as
the character data is converted to other encodings while traveling between client and server, because
the embedded encoding declaration is not changed. To cope with this behavior, encoding declarations
contained in character strings presented for input to the xm1 type are ignored, and content is assumed
to be in the current server encoding. Consequently, for correct processing, character strings of XML
data must be sent from the client in the current client encoding. It is the responsibility of the client
to either convert documents to the current client encoding before sending them to the server, or to
adjust the client encoding appropriately. On output, values of type xm1 will not have an encoding
declaration, and clients should assume all data is in the current client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
encoding conversion is performed, so the situation is different. In this case, an encoding declaration

153

Chapter 8. Data Types

in the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as
required by the XML standard; note that PostgreSQL does not support UTF-16). On output, data will
have an encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in
which case it will be omitted.

Needless to say, processing XML data with PostgreSQL will be less error-prone and more efficient
if the XML data encoding, client encoding, and server encoding are the same. Since XML data is
internally processed in UTF-8, computations will be most efficient if the server encoding is also
UTEF-8.

Caution

Some XML-related functions may not work at all on non-ASCII data when the
server encoding is not UTF-8. This is known to be an issue for xpath () in
particular.

8.13.3. Accessing XML Values

The xm1 data type is unusual in that it does not provide any comparison operators. This is because
there is no well-defined and universally useful comparison algorithm for XML data. One consequence
of this is that you cannot retrieve rows by comparing an xml column against a search value. XML
values should therefore typically be accompanied by a separate key field such as an ID. An alternative
solution for comparing XML values is to convert them to character strings first, but note that character
string comparison has little to do with a useful XML comparison method.

Since there are no comparison operators for the xm1 data type, it is not possible to create an index
directly on a column of this type. If speedy searches in XML data are desired, possible workarounds
include casting the expression to a character string type and indexing that, or indexing an XPath
expression. Of course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can also be used to speed up full-document searches
of XML data. The necessary preprocessing support is, however, not yet available in the PostgreSQL
distribution.

8.14. JSON Types

JSON data types are for storing JSON (JavaScript Object Notation) data, as specified in RFC 71597,
Such data can also be stored as text, but the JSON data types have the advantage of enforcing
that each stored value is valid according to the JSON rules. There are also assorted JSON-specific
functions and operators available for data stored in these data types; see Section 9.15.

There are two JSON data types: json and jsonb. They accept almost identical sets of values as input.
The major practical difference is one of efficiency. The json data type stores an exact copy of the
input text, which processing functions must reparse on each execution; while jsonb data is stored in
a decomposed binary format that makes it slightly slower to input due to added conversion overhead,
but significantly faster to process, since no reparsing is needed. jsonb also supports indexing, which
can be a significant advantage.

Because the json type stores an exact copy of the input text, it will preserve semantically-insignificant
white space between tokens, as well as the order of keys within JSON objects. Also, if a JSON object

2. https://tools.ietf.org/html/rfc7159

154

Chapter 8. Data Types

within the value contains the same key more than once, all the key/value pairs are kept. (The pro-
cessing functions consider the last value as the operative one.) By contrast, jsonb does not preserve
white space, does not preserve the order of object keys, and does not keep duplicate object keys. If
duplicate keys are specified in the input, only the last value is kept.

In general, most applications should prefer to store JSON data as jsonb, unless there are quite spe-
cialized needs, such as legacy assumptions about ordering of object keys.

PostgreSQL allows only one character set encoding per database. It is therefore not possible for the
JSON types to conform rigidly to the JSON specification unless the database encoding is UTF8. At-
tempts to directly include characters that cannot be represented in the database encoding will fail;
conversely, characters that can be represented in the database encoding but not in UTF8 will be al-
lowed.

RFC 7159 permits JSON strings to contain Unicode escape sequences denoted by \uxxxx. In the input
function for the json type, Unicode escapes are allowed regardless of the database encoding, and are
checked only for syntactic correctness (that is, that four hex digits follow \u). However, the input
function for jsonb is stricter: it disallows Unicode escapes for non-ASCII characters (those above
U+007F) unless the database encoding is UTFS. The jsonb type also rejects \u0000 (because that
cannot be represented in PostgreSQL’s text type), and it insists that any use of Unicode surrogate
pairs to designate characters outside the Unicode Basic Multilingual Plane be correct. Valid Unicode
escapes are converted to the equivalent ASCII or UTF8 character for storage; this includes folding
surrogate pairs into a single character.

Note: Many of the JSON processing functions described in Section 9.15 will convert Unicode
escapes to regular characters, and will therefore throw the same types of errors just described
even if their input is of type json not jsonb. The fact that the json input function does not make
these checks may be considered a historical artifact, although it does allow for simple storage
(without processing) of JSON Unicode escapes in a non-UTF8 database encoding. In general, it
is best to avoid mixing Unicode escapes in JSON with a non-UTF8 database encoding, if possible.

When converting textual JSON input into jsonb, the primitive types described by RFC 7159 are
effectively mapped onto native PostgreSQL types, as shown in Table 8-23. Therefore, there are some
minor additional constraints on what constitutes valid jsonb data that do not apply to the json type,
nor to JSON in the abstract, corresponding to limits on what can be represented by the underlying
data type. Notably, jsonb will reject numbers that are outside the range of the PostgreSQL numeric
data type, while json will not. Such implementation-defined restrictions are permitted by RFC 7159.
However, in practice such problems are far more likely to occur in other implementations, as it is
common to represent JSON’s number primitive type as IEEE 754 double precision floating point
(which RFC 7159 explicitly anticipates and allows for). When using JSON as an interchange format
with such systems, the danger of losing numeric precision compared to data originally stored by
PostgreSQL should be considered.

Conversely, as noted in the table there are some minor restrictions on the input format of JSON
primitive types that do not apply to the corresponding PostgreSQL types.

Table 8-23. JSON primitive types and corresponding PostgreSQL types

JSON primitive type PostgreSQL type Notes

string text \u0000 is disallowed, as are
non-ASCII Unicode escapes if
database encoding is not UTF8

155

Chapter 8. Data Types

JSON primitive type PostgreSQL type Notes

number numeric NaN and infinity values are
disallowed

boolean boolean Only lowercase t rue and

false spellings are accepted

null (none) SQL NULL is a different
concept

8.14.1. JSON Input and Output Syntax

The input/output syntax for the JSON data types is as specified in RFC 7159.

The following are all valid json (or jsonb) expressions:

-— Simple scalar/primitive value
—-— Primitive wvalues can be numbers, quoted strings, true, false, or null
SELECT ’'5’::json;

—-— Array of zero or more elements (elements need not be of same type)
SELECT " [1, 2, "foo", null]’::json;

—-— Object containing pairs of keys and values
—-— Note that object keys must always be quoted strings
SELECT ' {"bar": "baz", "balance": 7.77, "active": false}’::json;

—-— Arrays and objects can be nested arbitrarily
SELECT " {"foo": [true, "bar"], "tags": {"a": 1, "b": null}}’::json;

As previously stated, when a JSON value is input and then printed without any additional processing,
json outputs the same text that was input, while jsonb does not preserve semantically-insignificant
details such as whitespace. For example, note the differences here:

SELECT ' {"bar": "baz", "balance": 7.77, "active":false}’::json;
json
{"bar": "baz", "balance": 7.77, "active":false}
(1 row)
SELECT ' {"bar": "baz", "balance": 7.77, "active":false}’::jsonb;
jsonb
{"bar": "baz", "active": false, "balance": 7.77}
(1 row)

One semantically-insignificant detail worth noting is that in jsonb, numbers will be printed according
to the behavior of the underlying numeric type. In practice this means that numbers entered with &
notation will be printed without it, for example:

SELECT ' {"reading": 1.230e-5}’"::json, ’'{"reading": 1.230e-5}’::jsonb;
json | jsonb
_______________________ o
{"reading": 1.230e-5} | {"reading": 0.00001230}
(1 row)

156

Chapter 8. Data Types

However, jsonb will preserve trailing fractional zeroes, as seen in this example, even though those
are semantically insignificant for purposes such as equality checks.

8.14.2. Designing JSON documents effectively

Representing data as JSON can be considerably more flexible than the traditional relational data
model, which is compelling in environments where requirements are fluid. It is quite possible for both
approaches to co-exist and complement each other within the same application. However, even for
applications where maximal flexibility is desired, it is still recommended that JSON documents have
a somewhat fixed structure. The structure is typically unenforced (though enforcing some business
rules declaratively is possible), but having a predictable structure makes it easier to write queries that
usefully summarize a set of “documents” (datums) in a table.

JSON data is subject to the same concurrency-control considerations as any other data type when
stored in a table. Although storing large documents is practicable, keep in mind that any update
acquires a row-level lock on the whole row. Consider limiting JSON documents to a manageable size
in order to decrease lock contention among updating transactions. Ideally, JSON documents should
each represent an atomic datum that business rules dictate cannot reasonably be further subdivided
into smaller datums that could be modified independently.

8.14.3. jsonb Containment and Existence

Testing containment is an important capability of jsonb. There is no parallel set of facilities for
the json type. Containment tests whether one jsonb document has contained within it another one.
These examples return true except as noted:

-— Simple scalar/primitive values contain only the identical value:
SELECT ' "foo"’::jsonb @> ’""foo"’::jsonb;

—— The array on the right side is contained within the one on the left:
SELECT " [1, 2, 3]'::jsonb @> ’[1, 3]'::]jsonb;

—— Order of array elements is not significant, so this is also true:
SELECT ' [1, 2, 3]’::jsonb @> ’'[3, 1]’::jsonb;

—— Duplicate array elements don’t matter either:
SELECT ' [1, 2, 3]’::jsonb @> '[1, 2, 2]'::jsonb;

—— The object with a single pair on the right side is contained

—-— within the object on the left side:

SELECT ' {"product": "PostgreSQL", "version": 9.4, "jsonb": true}’::jsonb @> ’'{"version":
—— The array on the right side is not considered contained within the

—-— array on the left, even though a similar array is nested within it:

SELECT " [1, 2, [1, 3]1’::jsonb @> ’'[1, 3]1'::jsonb; -— yields false

—-— But with a layer of nesting, it is contained:
SELECT ' [1, 2, [1, 3]1"::jsonb @> " [[1, 3]]’::Jsonb;

—-— Similarly, containment is not reported here:
SELECT " {"foo": {"bar": "baz"}}’::jsonb @> ’{"bar": "baz"}’::jsonb; -— yields false

-— A top-level key and an empty object is contained:

157

Chapter 8. Data Types
SELECT " {"foo": {"bar": "baz"}}’::jsonb @> ’"{"foo": {}}’::jsonb;

The general principle is that the contained object must match the containing object as to structure and
data contents, possibly after discarding some non-matching array elements or object key/value pairs
from the containing object. But remember that the order of array elements is not significant when
doing a containment match, and duplicate array elements are effectively considered only once.

As a special exception to the general principle that the structures must match, an array may contain a
primitive value:

—-— This array contains the primitive string value:
SELECT ' ["foo", "bar"]’::jsonb @> ’"bar"’::jsonb;

—— This exception is not reciprocal —-- non-containment is reported here:
SELECT ’"bar"’::Jjsonb @> ' ["bar"]’::jsonb; -- yields false

jsonb also has an existence operator, which is a variation on the theme of containment: it tests
whether a string (given as a text value) appears as an object key or array element at the top level of
the jsonb value. These examples return true except as noted:

-— String exists as array element:
SELECT ' ["foo", "bar", "baz"]’::jsonb ? ’"bar’;

—-— String exists as object key:
SELECT " {"foo": "bar"}’::jsonb ? ’"foo’;

—— Object values are not considered:
SELECT " {"foo": "bar"}’::jsonb ? ’'bar’; -- yields false

—-— As with containment, existence must match at the top level:
SELECT ' {"foo": {"bar": "baz"}}’::jsonb ? ’'bar’; -- yields false

—-— A string is considered to exist if it matches a primitive JSON string:
SELECT ’'"foo"’::jsonb ? "foo’;

JSON objects are better suited than arrays for testing containment or existence when there are many
keys or elements involved, because unlike arrays they are internally optimized for searching, and do
not need to be searched linearly.

Tip: Because JSON containment is nested, an appropriate query can skip explicit selection of
sub-objects. As an example, suppose that we have a doc column containing objects at the top
level, with most objects containing tags fields that contain arrays of sub-objects. This query finds
entries in which sub-objects containing both "term": "paris" and "term": "food" appear, while
ignoring any such keys outside the tags array:

SELECT doc—->'site_name’ FROM websites
WHERE doc @> ' {"tags":[{"term":"paris"}, {"term":"food"}]}’;

One could accomplish the same thing with, say,

SELECT doc—>'site_name’ FROM websites
WHERE doc->'tags’ @> ' [{"term":"paris"}, {"term":"food"}]’;

but that approach is less flexible, and often less efficient as well.

On the other hand, the JSON existence operator is not nested: it will only look for the specified
key or array element at top level of the JSON value.

158

Chapter 8. Data Types

The various containment and existence operators, along with all other JSON operators and functions
are documented in Section 9.15.

8.14.4. jsonb Indexing

GIN indexes can be used to efficiently search for keys or key/value pairs occurring within a large
number of jsonb documents (datums). Two GIN “operator classes” are provided, offering different
performance and flexibility trade-offs.

The default GIN operator class for jsonb supports queries with top-level key-exists operators ?, ?&
and ? | operators and path/value-exists operator @>. (For details of the semantics that these operators
implement, see Table 9-43.) An example of creating an index with this operator class is:

CREATE INDEX idxgin ON api USING GIN (jdoc);

The non-default GIN operator class jsonb_path_ops supports indexing the @> operator only. An
example of creating an index with this operator class is:

CREATE INDEX idxginp ON api USING GIN (jdoc jsonb_path_ops);

Consider the example of a table that stores JSON documents retrieved from a third-party web service,
with a documented schema definition. A typical document is:

"guid": "9c36adcl-7fb5-4d5b-83b4-90356a46061a",
"name": "Angela Barton",

"is_active": true,

"company": "Magnafone",

"address": "178 Howard Place, Gulf, Washington, 702",
"registered": "2009-11-07T08:53:22 +08:00",

"latitude": 19.793713,
"longitude": 86.513373,
"tags": [

"enim",

"aliquip",

n qui n

We store these documents in a table named api, in a jsonb column named jdoc. If a GIN index is
created on this column, queries like the following can make use of the index:

—-— Find documents in which the key "company" has value "Magnafone"
SELECT jdoc->'guid’, jdoc—->’name’ FROM api WHERE jdoc @> ' {"company": "Magnafone"}’;

However, the index could not be used for queries like the following, because though the operator 2 is
indexable, it is not applied directly to the indexed column jdoc:

—-— Find documents in which the key "tags" contains key or array element "qui"
SELECT jdoc->'guid’, jdoc—->’name’ FROM api WHERE jdoc -> ’'tags’ ? ’'qui’;

Still, with appropriate use of expression indexes, the above query can use an index. If querying for
particular items within the "tags" key is common, defining an index like this may be worthwhile:

CREATE INDEX idxgintags ON api USING GIN ((jdoc -> ’tags’));

159

Chapter 8. Data Types

Now, the WHERE clause jdoc -> ’tags’ 2 ‘qui’ will be recognized as an application of the
indexable operator ? to the indexed expression jdoc -> ’tags’.(More information on expression
indexes can be found in Section 11.7.)

Another approach to querying is to exploit containment, for example:

—-— Find documents in which the key "tags" contains array element "qui"
SELECT jdoc->’guid’, jdoc—>’'name’ FROM api WHERE jdoc @> ’{"tags": ["qui"]l}’;

A simple GIN index on the jdoc column can support this query. But note that such an index will
store copies of every key and value in the jdoc column, whereas the expression index of the previous
example stores only data found under the tags key. While the simple-index approach is far more
flexible (since it supports queries about any key), targeted expression indexes are likely to be smaller
and faster to search than a simple index.

Although the jsonb_path_ops operator class supports only queries with the @> operator, it has
notable performance advantages over the default operator class jsonb_ops. A jsonb_path_ops
index is usually much smaller than a jsonb_ops index over the same data, and the specificity of
searches is better, particularly when queries contain keys that appear frequently in the data. Therefore
search operations typically perform better than with the default operator class.

The technical difference between a jsonb_ops and a jsonb_path_ops GIN index is that the former
creates independent index items for each key and value in the data, while the latter creates index items
only for each value in the data. * Basically, each jsonb_path_ops index item is a hash of the value
and the key(s) leading to it; for example to index {"foo": {"bar": "baz"}}, a single index item
would be created incorporating all three of foo, bar, and baz into the hash value. Thus a containment
query looking for this structure would result in an extremely specific index search; but there is no way
at all to find out whether foo appears as a key. On the other hand, a jsonb_ops index would create
three index items representing foo, bar, and baz separately; then to do the containment query, it
would look for rows containing all three of these items. While GIN indexes can perform such an AND
search fairly efficiently, it will still be less specific and slower than the equivalent jsonb_path_ops
search, especially if there are a very large number of rows containing any single one of the three index
items.

A disadvantage of the jsonb_path_ops approach is that it produces no index entries for JSON
structures not containing any values, such as {"a": {}}. If a search for documents containing such
a structure is requested, it will require a full-index scan, which is quite slow. jsonb_path_ops is
therefore ill-suited for applications that often perform such searches.

jsonb also supports btree and hash indexes. These are usually useful only if it’s important to
check equality of complete JSON documents. The bt ree ordering for jsonb datums is seldom of
great interest, but for completeness it is:

Object > Array > Boolean > Number > String > Null
Object with n pairs > object with n - 1 pairs

Array with n elements > array with n - 1 elements
Objects with equal numbers of pairs are compared in the order:
key-1, value-1, key-2

Note that object keys are compared in their storage order; in particular, since shorter keys are stored
before longer keys, this can lead to results that might be unintuitive, such as:

3. For this purpose, the term “value” includes array elements, though JSON terminology sometimes considers array elements
distinct from values within objects.

160

Chapter 8. Data Types
{ "aa": 1, "c": 1} > {"b": 1, "d": 1}
Similarly, arrays with equal numbers of elements are compared in the order:
element-1, element-2

Primitive JSON values are compared using the same comparison rules as for the underlying Post-
greSQL data type. Strings are compared using the default database collation.

8.15. Arrays

PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Ar-
rays of any built-in or user-defined base type, enum type, or composite type can be created. Arrays of
domains are not yet supported.

8.15.1. Declaration of Array Types

To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (
name text,
pay_by_qgquarter integer|[],
schedule text[][]
)

As shown, an array data type is named by appending square brackets ([1) to the data type name of
the array elements. The above command will create a table named sal_emp with a column of type
text (name), a one-dimensional array of type integer (pay_by_quarter), which represents the
employee’s salary by quarter, and a two-dimensional array of text (schedule), which represents
the employee’s weekly schedule.

The syntax for CREATE TABLE allows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer[3][3]

)i
However, the current implementation ignores any supplied array size limits, i.e., the behavior is the
same as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of
a particular element type are all considered to be of the same type, regardless of size or number
of dimensions. So, declaring the array size or number of dimensions in CREATE TABLE is simply
documentation; it does not affect run-time behavior.

An alternative syntax, which conforms to the SQL standard by using the keyword ARRAY, can be used
for one-dimensional arrays. pay_by_quarter could have been defined as:

pay_by_qgquarter integer ARRAY[4],
Or, if no array size is to be specified:

pay_by_quarter integer ARRAY,

161

Chapter 8. Data Types

As before, however, PostgreSQL does not enforce the size restriction in any case.

8.15.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and
separate them by commas. (If you know C, this is not unlike the C syntax for initializing structures.)
You can put double quotes around any element value, and must do so if it contains commas or curly
braces. (More details appear below.) Thus, the general format of an array constant is the following:

"{ vall delim val2 delim ... }'

where delim is the delimiter character for the type, as recorded in its pg_type entry. Among the
standard data types provided in the PostgreSQL distribution, all use a comma (,), except for type box
which uses a semicolon (;). Each val is either a constant of the array element type, or a subarray. An
example of an array constant is:

"{{1,2,3},{4,5,6},{7,8,9}}’

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or
lower-case variant of NULL will do.) If you want an actual string value “NULL”, you must put double
quotes around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.7. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some INSERT statements:

INSERT INTO sal_emp
VALUES (’Bill’,
{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"training", "presentation"}}’);

INSERT INTO sal_emp
VALUES ('Carol’,
{20000, 25000, 25000, 25000}",
"{{"breakfast", "consulting"}, {"meeting", "lunch"}}’);

The result of the previous two inserts looks like this:

SELECT x FROM sal_emp;

name | pay_by_qguarter schedule

{10000,10000,10000,10000}
{20000, 25000,25000, 25000}

{{meeting, lunch}, {training, presentation}}
{{breakfast,consulting}, {meeting, lunch}}

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error,
for example:

INSERT INTO sal_emp
VALUES (’Bill’,

162

Chapter 8. Data Types

{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"meeting"}}’);
ERROR: multidimensional arrays must have array expressions with matching dimensions

The ARRAY constructor syntax can also be used:

INSERT INTO sal_emp
VALUES ('Bill’,
ARRAY[10000, 10000, 10000, 100007,
ARRAY [['meeting’, ’lunch’], [’'training’, ’'presentation’]]);

INSERT INTO sal_emp
VALUES (’Carol’,
ARRAY [20000, 25000, 25000, 250007,
ARRAY [["breakfast’, ’consulting’], [’'meeting’, ’lunch’]11]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals
are single quoted, instead of double quoted as they would be in an array literal. The ARRAY constructor
syntax is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[l] <> pay_by_qguarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses a one-
based numbering convention for arrays, that is, an array of n elements starts with array[1] and ends
with array [n].

This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

pay_by_quarter

10000
25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted
by writing lower-bound: upper-bound for one or more array dimensions. For example, this query
retrieves the first item on Bill’s schedule for the first two days of the week:

SELECT schedule[1l:2][1:1] FROM sal_emp WHERE name = ’'Bill’;

schedule

163

Chapter 8. Data Types

{{meeting}, {training}}
(1 row)

If any dimension is written as a slice, i.e., contains a colon, then all dimensions are treated as slices.
Any dimension that has only a single number (no colon) is treated as being from 1 to the number
specified. For example, [2] is treated as [1:2], as in this example:

SELECT schedule[1:2][2] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting, lunch}, {training, presentation}}
(1 row)

To avoid confusion with the non-slice case, it’s best to use slice syntax for all dimensions, e.g.,
[1:2][1:1],n0t [2][1:1].

It is possible to omit the 1ower-bound and/or upper—-bound of a slice specifier; the missing bound
is replaced by the lower or upper limit of the array’s subscripts. For example:

SELECT schedule[:2][2:] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{lunch}, {presentation}}
(1 row)

SELECT schedule[:][1:1] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting}, {training}}
(1 row)

An array subscript expression will return null if either the array itself or any of the subscript expres-
sions are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise
an error). For example, if schedule currently has the dimensions [1:3][1:2] then referencing
schedule[3][3] yields NULL. Similarly, an array reference with the wrong number of subscripts
yields a null rather than an error.

An array slice expression likewise yields null if the array itself or any of the subscript expressions are
null. However, in other cases such as selecting an array slice that is completely outside the current
array bounds, a slice expression yields an empty (zero-dimensional) array instead of null. (This does
not match non-slice behavior and is done for historical reasons.) If the requested slice partially over-
laps the array bounds, then it is silently reduced to just the overlapping region instead of returning
null.

The current dimensions of any array value can be retrieved with the array_dims function:

SELECT array_dims (schedule) FROM sal_emp WHERE name = ’'Carol’;

array_dims

[1:2][1:2]
(1 row)

164

Chapter 8. Data Types

array_dims produces a text result, which is convenient for people to read but perhaps inconvenient
for programs. Dimensions can also be retrieved with array_upper and array_lower, which return
the upper and lower bound of a specified array dimension, respectively:

SELECT array_upper (schedule, 1) FROM sal_emp WHERE name = ’Carol’;

array_upper

(1 row)
array_length will return the length of a specified array dimension:
SELECT array_length(schedule, 1) FROM sal_emp WHERE name = ’Carol’;

array_length

(1 row)

cardinality returns the total number of elements in an array across all dimensions. It is effectively
the number of rows a call to unnest would yield:

SELECT cardinality(schedule) FROM sal_emp WHERE name = ’‘Carol’;

cardinality

8.15.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = ’{25000,25000,27000,27000}"
WHERE name = ’'Carol’;

or using the ARRAY expression syntax:

UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
WHERE name = ’'Carol’;

An array can also be updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
WHERE name = ’'Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by_quarter[1l:2] = 7 {27000,27000}"
WHERE name = ’'Carol’;

165

Chapter 8. Data Types

The slice syntaxes with omitted 1ower-bound and/or upper-bound can be used too, but only when
updating an array value that is not NULL or zero-dimensional (otherwise, there is no existing subscript
limit to substitute).

A stored array value can be enlarged by assigning to elements not already present. Any positions be-
tween those previously present and the newly assigned elements will be filled with nulls. For example,
if array myarray currently has 4 elements, it will have six elements after an update that assigns to
myarray[6]; myarray[5] will contain null. Currently, enlargement in this fashion is only allowed
for one-dimensional arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example
one might assign to myarray [-2:7] to create an array with subscript values from -2 to 7.

New array values can also be constructed using the concatenation operator, | |:

SELECT ARRAY[1,2] || ARRAY[3,4];

?column?

{1,2,3,4}
(1 row)

SELECT ARRAY[5,6] || ARRAY[[1,2]1,103,411;
?column?

{{5,6},{1,2},1{3,4}}
(1 row)

The concatenation operator allows a single element to be pushed onto the beginning or end of a
one-dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-
dimensional array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the
result is an array with the same lower bound subscript as the array operand. For example:

SELECT array_dims(1l || "[0:1]={2,3}"::int[]);
array_dims

[0:2]
(1 row)

SELECT array_dims (ARRAY[1,2] || 3);
array_dims

[1:3]
(1 row)

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand’s outer dimension. The result is an array comprising every
element of the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[3,4,5]1);
array_dims

[1:5]
(1 row)

166

Chapter 8. Data Types

SELECT array_dims (ARRAY[[1,2],13,4]] || ARRAY[[5,6]1,17,8]1,1[9,011);
array_dims

[1:5][1:2]
(1 row)

When an n-dimensional array is pushed onto the beginning or end of an N+1-dimensional array, the
result is analogous to the element-array case above. Each N-dimensional sub-array is essentially an
element of the N+1-dimensional array’s outer dimension. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[[3,4]1,1[5,6]1]);
array_dims

[1:3][1:2]
(1 row)

An array can also be constructed by using the functions array_prepend, array_append,
or array_cat. The first two only support one-dimensional arrays, but array_cat supports
multidimensional arrays. Some examples:

SELECT array_prepend(l, ARRAY[2,3]);
array_prepend

{1,2,3}
(1 row)

SELECT array_append (ARRAY[1,2], 3);
array_append

{1,2,3}
(1 row)

SELECT array_cat (ARRAY[1,2], ARRAY[3,41]1);
array_cat

{1,2,3,4}
(1 row)

SELECT array_cat (ARRAY[[1,2],[3,4]1], ARRAY[5,6]);
array_cat

{{1,2},{3,4},{5,6}}
(1 row)

SELECT array_cat (ARRAY[5,6], ARRAY[[1,2],1[3,411);
array_cat

{{5,6},{1,2},{3,4}}

167

Chapter 8. Data Types

In simple cases, the concatenation operator discussed above is preferred over direct use of these
functions. However, because the concatenation operator is overloaded to serve all three cases, there
are situations where use of one of the functions is helpful to avoid ambiguity. For example consider:

SELECT ARRAY[1, 2] || {3, 4}'; —— the untyped literal is taken as an array
?column?
{1,2,3,4}

SELECT ARRAY[1, 21 || "7"; —-— so 1s this one

ERROR: malformed array literal: "7"

SELECT ARRAY[1, 2] || NULL; —— so 1s an undecorated NULL
?column?
{1,2}

(1 row)

SELECT array_append (ARRAY[1, 2], NULL); —— this might have been meant

array_append

{1,2,NULL}

In the examples above, the parser sees an integer array on one side of the concatenation operator,
and a constant of undetermined type on the other. The heuristic it uses to resolve the constant’s type
is to assume it’s of the same type as the operator’s other input — in this case, integer array. So the
concatenation operator is presumed to represent array_cat, not array_append. When that’s the
wrong choice, it could be fixed by casting the constant to the array’s element type; but explicit use of
array_append might be a preferable solution.

8.15.5. Searching in Arrays

To search for a value in an array, each value must be checked. This can be done manually, if you know
the size of the array. For example:

SELECT * FROM sal_emp WHERE pay_by_quarter[1l] = 10000 OR
pay_by_quarter[2] = 10000 OR
pay_by_qgquarter[3] = 10000 OR
pay_by_quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.23. The above query could be replaced by:

SELECT x= FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);
In addition, you can find rows where the array has all values equal to 10000 with:

SELECT %= FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Alternatively, the generate_subscripts function can be used. For example:

SELECT x FROM
(SELECT pay_by_dquarter,
generate_subscripts (pay_by_quarter, 1) AS s

168

Chapter 8. Data Types

FROM sal_emp) AS foo
WHERE pay_by_quarter[s] = 10000;

This function is described in Table 9-58.

You can also search an array using the && operator, which checks whether the left operand overlaps
with the right operand. For instance:

SELECT x FROM sal_emp WHERE pay_by_quarter && ARRAY[10000];

This and other array operators are further described in Section 9.18. It can be accelerated by an
appropriate index, as described in Section 11.2.

You can also search for specific values in an array using the array_position and
array_positions functions. The former returns the subscript of the first occurrence of a value in
an array; the latter returns an array with the subscripts of all occurrences of the value in the array. For
example:

SELECT array_position (ARRAY[’'sun’,’mon’,’tue’,’wed’,’thu’,’ fri’,’ sat’], ’'mon’);
array_positions

SELECT array_positions (ARRAY[1, 4, 3, 1, 3, 4, 2, 11, 1);
array_positions

Tip: Arrays are not sets; searching for specific array elements can be a sign of database misde-
sign. Consider using a separate table with a row for each item that would be an array element.
This will be easier to search, and is likely to scale better for a large number of elements.

8.15.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array’s element type, plus decoration that indicates the array structure.
The decoration consists of curly braces ({ and }) around the array value plus delimiter characters
between adjacent items. The delimiter character is usually a comma (,) but can be something else:
it is determined by the typdelim setting for the array’s element type. Among the standard data
types provided in the PostgreSQL distribution, all use a comma, except for type box, which uses a
semicolon (;). In a multidimensional array, each dimension (row, plane, cube, etc.) gets its own level
of curly braces, and delimiters must be written between adjacent curly-braced entities of the same
level.

The array output routine will put double quotes around element values if they are empty strings,
contain curly braces, delimiter characters, double quotes, backslashes, or white space, or match the
word NULL. Double quotes and backslashes embedded in element values will be backslash-escaped.
For numeric data types it is safe to assume that double quotes will never appear, but for textual data
types one should be prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array’s dimensions is set to one. To represent arrays
with other lower bounds, the array subscript ranges can be specified explicitly before writing the array

169

Chapter 8. Data Types

contents. This decoration consists of square brackets ([1) around each array dimension’s lower and
upper bounds, with a colon (:) delimiter character in between. The array dimension decoration is
followed by an equal sign (=). For example:

SELECT f1[1]([-2]1[3] AS el, f1[1]1[-1]1[5] AS e2
FROM (SELECT ' [1:1]1[-2:-1]1[3:51={{{1,2,3},{4,5,6}}}’::int[] AS fl) AS ss;

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL.
The presence of any quotes or backslashes disables this and allows the literal string value “NULL”
to be entered. Also, for backward compatibility with pre-8.2 versions of PostgreSQL, the array_nulls
configuration parameter can be turned of £ to suppress recognition of NULL as a NULL.

As shown previously, when writing an array value you can use double quotes around any individ-
ual array element. You must do so if the element value would otherwise confuse the array-value
parser. For example, elements containing curly braces, commas (or the data type’s delimiter char-
acter), double quotes, backslashes, or leading or trailing whitespace must be double-quoted. Empty
strings and strings matching the word NULL must be quoted, too. To put a double quote or backslash
in a quoted array element value, precede it with a backslash. Alternatively, you can avoid quotes and
use backslash-escaping to protect all data characters that would otherwise be taken as array syntax.

You can add whitespace before a left brace or after a right brace. You can also add whitespace before
or after any individual item string. In all of these cases the whitespace will be ignored. However,
whitespace within double-quoted elements, or surrounded on both sides by non-whitespace characters
of an element, is not ignored.

Tip: The arRrAY constructor syntax (see Section 4.2.12) is often easier to work with than the array-
literal syntax when writing array values in SQL commands. In array, individual element values
are written the same way they would be written when not members of an array.

8.16. Composite Types

A composite type represents the structure of a row or record; it is essentially just a list of field names
and their data types. PostgreSQL allows composite types to be used in many of the same ways that
simple types can be used. For example, a column of a table can be declared to be of a composite type.

8.16.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE complex AS (
r double precision,
i double precision
)i

170

Chapter 8. Data Types

CREATE TYPE inventory_item AS (

name text,
supplier_id integer,
price numeric

)i

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the As keyword is essential;
without it, the system will think a different kind of CREATE TYPE command is meant, and you will
get odd syntax errors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
item inventory_item,
count integer

)i
INSERT INTO on_hand VALUES (ROW(’fuzzy dice’, 42, 1.99), 1000);
or functions:

CREATE FUNCTION price_extension (inventory_item, integer) RETURNS numeric
AS ’'SELECT $l.price * $2’ LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as
the table, to represent the table’s row type. For example, had we said:

CREATE TABLE inventory_item (

name text,
supplier_id integer REFERENCES suppliers,
price numeric CHECK (price > 0)

)i

then the same inventory_item composite type shown above would come into being as a byproduct,
and could be used just as above. Note however an important restriction of the current implementation:
since no constraints are associated with a composite type, the constraints shown in the table definition
do not apply to values of the composite type outside the table. (A partial workaround is to use domain
types as members of composite types.)

8.16.2. Constructing Composite Values

To write a composite value as a literal constant, enclose the field values within parentheses and sepa-
rate them by commas. You can put double quotes around any field value, and must do so if it contains
commas or parentheses. (More details appear below.) Thus, the general format of a composite con-
stant is the following:

"(vall , valz , ...)’

An example is:

171

Chapter 8. Data Types
" ("fuzzy dice",42,1.99)"

which would be a valid value of the inventory_item type defined above. To make a field be NULL,
write no characters at all in its position in the list. For example, this constant specifies a NULL third
field:

" ("fuzzy dice",42,)’
If you want an empty string rather than NULL, write double quotes:
4 (nn , 4 2 ,) 4

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in Section
4.1.2.7. The constant is initially treated as a string and passed to the composite-type input conversion
routine. An explicit type specification might be necessary to tell which type to convert the constant
to.)

The ROW expression syntax can also be used to construct composite values. In most cases this is
considerably simpler to use than the string-literal syntax since you don’t have to worry about multiple
layers of quoting. We already used this method above:

ROW (' fuzzy dice’, 42, 1.99)
ROW (”, 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression, so
these can be simplified to:

(" fuzzy dice’, 42, 1.99)
(”, 42, NULL)

The rROW expression syntax is discussed in more detail in Section 4.2.13.

8.16.3. Accessing Composite Types

To access a field of a composite column, one writes a dot and the field name, much like selecting a
field from a table name. In fact, it’s so much like selecting from a table name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields
from our on_hand example table with something like:

SELECT item.name FROM on_hand WHERE item.price > 9.99;

This will not work since the name item is taken to be a table name, not a column name of on_hand,
per SQL syntax rules. You must write it like this:

SELECT (item) .name FROM on_hand WHERE (item) .price > 9.99;
or if you need to use the table name as well (for instance in a multitable query), like this:
SELECT (on_hand.item) .name FROM on_hand WHERE (on_hand.item) .price > 9.99;

Now the parenthesized object is correctly interpreted as a reference to the item column, and then the
subfield can be selected from it.

172

Chapter 8. Data Types

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to
select just one field from the result of a function that returns a composite value, you’d need to write
something like:

SELECT (my_func(...)).field FROM ...

Without the extra parentheses, this will generate a syntax error.

The special field name » means “all fields”, as further explained in Section 8.16.5.

8.16.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First,
inserting or updating a whole column:

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));
UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;

The first example omits ROW, the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:
UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

Notice here that we don’t need to (and indeed cannot) put parentheses around the column name
appearing just after SET, but we do need parentheses when referencing the same column in the ex-
pression to the right of the equal sign.

And we can specify subfields as targets for INSERT, too:
INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(l.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have
been filled with null values.

8.16.5. Using Composite Types in Queries

There are various special syntax rules and behaviors associated with composite types in queries. These
rules provide useful shortcuts, but can be confusing if you don’t know the logic behind them.

In PostgreSQL, a reference to a table name (or alias) in a query is effectively a reference to the
composite value of the table’s current row. For example, if we had a table inventory_item as
shown above, we could write:

SELECT ¢ FROM inventory_item c;
This query produces a single composite-valued column, so we might get output like:

("fuzzy dice",42,1.99)
(1 row)

Note however that simple names are matched to column names before table names, so this example
works only because there is no column named c in the query’s tables.

173

Chapter 8. Data Types

The ordinary qualified-column-name syntax table_name.column_name can be understood as ap-
plying field selection to the composite value of the table’s current row. (For efficiency reasons, it’s not
actually implemented that way.)

When we write
SELECT c.x FROM inventory_item c;

then, according to the SQL standard, we should get the contents of the table expanded into separate
columns:

name | supplier_id | price
,,,,,,,,,,,, o
fuzzy dice | 42 | 1.99
(1 row)

as if the query were

SELECT c.name, c.supplier_id, c.price FROM inventory_item c;

PostgreSQL will apply this expansion behavior to any composite-valued expression, although as
shown above, you need to write parentheses around the value that .« is applied to whenever it’s
not a simple table name. For example, if myfunc () is a function returning a composite type with
columns a, b, and c, then these two queries have the same result:

SELECT (myfunc(x)) . FROM some_table;
SELECT (myfunc(x)).a, (myfunc(x)).b, (myfunc(x)).c FROM some_table;

Tip: PostgreSQL handles column expansion by actually transforming the first form into the sec-
ond. So, in this example, myfunc () would get invoked three times per row with either syntax. If
it's an expensive function you may wish to avoid that, which you can do with a query like:

SELECT (m).* FROM (SELECT myfunc(x) AS m FROM some_table OFFSET 0) ss;

The orrseT 0 clause keeps the optimizer from “flattening” the sub-select to arrive at the form with
multiple calls of myfunc ().

The composite_value. syntax results in column expansion of this kind when it appears at the
top level of a SELECT output list, a RETURNING list in INSERT/UPDATE/DELETE, a VALUES clause,
or a row constructor. In all other contexts (including when nested inside one of those constructs),
attaching . » to a composite value does not change the value, since it means “all columns” and so the
same composite value is produced again. For example, if somefunc () accepts a composite-valued
argument, these queries are the same:

SELECT somefunc(c.*) FROM inventory_item c;
SELECT somefunc(c) FROM inventory_item c;

In both cases, the current row of inventory_item is passed to the function as a single composite-
valued argument. Even though . x does nothing in such cases, using it is good style, since it makes
clear that a composite value is intended. In particular, the parser will consider c in c. x to refer to a
table name or alias, not to a column name, so that there is no ambiguity; whereas without . «, it is not
clear whether ¢ means a table name or a column name, and in fact the column-name interpretation
will be preferred if there is a column named c.

174

Chapter 8. Data Types

Another example demonstrating these concepts is that all these queries mean the same thing:

SELECT = FROM inventory_item c ORDER BY c;
SELECT = FROM inventory_item c ORDER BY c.=x;
SELECT = FROM inventory_item c ORDER BY ROW(c.x);

All of these ORDER BY clauses specify the row’s composite value, resulting in sorting the rows ac-
cording to the rules described in Section 9.23.6. However, if inventory_item contained a column
named c, the first case would be different from the others, as it would mean to sort by that column
only. Given the column names previously shown, these queries are also equivalent to those above:

SELECT = FROM inventory_item c¢ ORDER BY ROW(c.name, c.supplier_id, c.price);
SELECT = FROM inventory_item c ORDER BY (c.name, c.supplier_id, c.price);

(The last case uses a row constructor with the key word ROwW omitted.)

Another special syntactical behavior associated with composite values is that we can use functional
notation for extracting a field of a composite value. The simple way to explain this is that the notations
field(table) and table. field are interchangeable. For example, these queries are equivalent:

SELECT c.name FROM inventory_item c¢ WHERE c.price > 1000;
SELECT name (c) FROM inventory_item c WHERE price(c) > 1000;

Moreover, if we have a function that accepts a single argument of a composite type, we can call it
with either notation. These queries are all equivalent:

SELECT somefunc(c) FROM inventory_item c;
SELECT somefunc(c.x) FROM inventory_item c;
SELECT c.somefunc FROM inventory_item c;

This equivalence between functional notation and field notation makes it possible to use functions on
composite types to implement “computed fields”. An application using the last query above wouldn’t
need to be directly aware that somefunc isn’t a real column of the table.

Tip: Because of this behavior, it's unwise to give a function that takes a single composite-type
argument the same name as any of the fields of that composite type. If there is ambiguity, the
field-name interpretation will be preferred, so that such a function could not be called without
tricks. One way to force the function interpretation is to schema-qualify the function name, that is,

write schema. func (compositevalue) .

8.16.6. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according
to the I/O conversion rules for the individual field types, plus decoration that indicates the composite
structure. The decoration consists of parentheses ((and)) around the whole value, plus commas (,)
between adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it
is considered part of the field value, and might or might not be significant depending on the input
conversion rules for the field data type. For example, in:

/(42)!

the whitespace will be ignored if the field type is integer, but not if it is text.

175

Chapter 8. Data Types

As shown previously, when writing a composite value you can write double quotes around any in-
dividual field value. You must do so if the field value would otherwise confuse the composite-value
parser. In particular, fields containing parentheses, commas, double quotes, or backslashes must be
double-quoted. To put a double quote or backslash in a quoted composite field value, precede it with
a backslash. (Also, a pair of double quotes within a double-quoted field value is taken to represent a
double quote character, analogously to the rules for single quotes in SQL literal strings.) Alternatively,
you can avoid quoting and use backslash-escaping to protect all data characters that would otherwise
be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents
a NULL. To write a value that is an empty string rather than NULL, write "".

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space
is not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be
doubled.

Note: Remember that what you write in an SQL command will first be interpreted as a string
literal, and then as a composite. This doubles the number of backslashes you need (assuming
escape string syntax is used). For example, to insert a text field containing a double quote and
a backslash in a composite value, you'd need to write:

INSERT ... VALUES (’/ ("\"\\")’);

The string-literal processor removes one level of backslashes, so that what arrives at the
composite-value parser looks like ("\"\\"). In turn, the string fed to the text data type’s input
routine becomes "\. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored composite field.) Dollar quoting (see Section
4.1.2.4) can be used to avoid the need to double backslashes.

Tip: The row constructor syntax is usually easier to work with than the composite-literal syntax
when writing composite values in SQL commands. In row, individual field values are written the
same way they would be written when not members of a composite.

8.17. Range Types

Range types are data types representing a range of values of some element type (called the range’s
subtype). For instance, ranges of timestamp might be used to represent the ranges of time that a
meeting room is reserved. In this case the data type is tsrange (short for “timestamp range”), and
timestamp is the subtype. The subtype must have a total order so that it is well-defined whether
element values are within, before, or after a range of values.

Range types are useful because they represent many element values in a single range value, and
because concepts such as overlapping ranges can be expressed clearly. The use of time and date
ranges for scheduling purposes is the clearest example; but price ranges, measurement ranges from
an instrument, and so forth can also be useful.

176

Chapter 8. Data Types

8.17.1. Built-in Range Types

PostgreSQL comes with the following built-in range types:

+ int4range — Range of integer

+ int8range — Range of bigint

+ numrange — Range of numeric

» tsrange — Range of timestamp without time zone
+ tstzrange — Range of timestamp with time zone
+ daterange — Range of date

In addition, you can define your own range types; see CREATE TYPE for more information.

8.17.2. Examples

CREATE TABLE reservation (room int, during tsrange);
INSERT INTO reservation VALUES
(1108, ’[2010-01-01 14:30, 2010-01-01 15:30)");

—— Containment
SELECT int4range (10, 20) @> 3;

—-— Overlaps
SELECT numrange (11.1, 22.2) && numrange (20.0, 30.0);

—-— Extract the upper bound
SELECT upper (int8range (15, 25));

—— Compute the intersection
SELECT int4range (10, 20) = int4range (15, 25);

—— Is the range empty?
SELECT isempty (numrange(l, 5));

See Table 9-49 and Table 9-50 for complete lists of operators and functions on range types.

8.17.3. Inclusive and Exclusive Bounds

Every non-empty range has two bounds, the lower bound and the upper bound. All points between
these values are included in the range. An inclusive bound means that the boundary point itself is
included in the range as well, while an exclusive bound means that the boundary point is not included
in the range.

while an exclusive lower
, while an

In the text form of a range, an inclusive lower bound is represented by
bound is represented by “(”. Likewise, an inclusive upper bound is represented by
exclusive upper bound is represented by ““) . (See Section 8.17.5 for more details.)

[T %]
[

q 9
]

The functions lower_inc and upper_inc test the inclusivity of the lower and upper bounds of a
range value, respectively.

177

Chapter 8. Data Types

8.17.4. Infinite (Unbounded) Ranges

The lower bound of a range can be omitted, meaning that all values less than the upper bound are
included in the range, e.g., (, 31. Likewise, if the upper bound of the range is omitted, then all values
greater than the lower bound are included in the range. If both lower and upper bounds are omitted, all
values of the element type are considered to be in the range. Specifying a missing bound as inclusive
is automatically converted to exclusive, e.g., [,] is converted to (,). You can think of these missing
values as +/-infinity, but they are special range type values and are considered to be beyond any range
element type’s +/-infinity values.

Element types that have the notion of “infinity” can use them as explicit bound values. For exam-
ple, with timestamp ranges, [today, infinity) excludes the special t imestamp value infinity,
while [today, infinity] include it, as does [today,) and [today,].

The functions lower_inf and upper_inf test for infinite lower and upper bounds of a range, re-
spectively.

8.17.5. Range Input/Output

The input for a range value must follow one of the following patterns:

lower-bound, upper—-bound
lower-bound, upper—-bound

()
(]
[lower-bound, upper-bound)
[Iower-bound, upper—bound]

empty

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive,
as described previously. Notice that the final pattern is empty, which represents an empty range (a
range that contains no points).

The 1ower-bound may be either a string that is valid input for the subtype, or empty to indicate no
lower bound. Likewise, upper—-bound may be either a string that is valid input for the subtype, or
empty to indicate no upper bound.

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound
value contains parentheses, brackets, commas, double quotes, or backslashes, since these characters
would otherwise be taken as part of the range syntax. To put a double quote or backslash in a quoted
bound value, precede it with a backslash. (Also, a pair of double quotes within a double-quoted bound
value is taken to represent a double quote character, analogously to the rules for single quotes in SQL
literal strings.) Alternatively, you can avoid quoting and use backslash-escaping to protect all data
characters that would otherwise be taken as range syntax. Also, to write a bound value that is an
empty string, write " ", since writing nothing means an infinite bound.

Whitespace is allowed before and after the range value, but any whitespace between the parentheses
or brackets is taken as part of the lower or upper bound value. (Depending on the element type, it
might or might not be significant.)

Note: These rules are very similar to those for writing field values in composite-type literals. See
Section 8.16.6 for additional commentary.

Examples:

—-— includes 3, does not include 7, and does include all points in between

178

Chapter 8. Data Types
SELECT ' [3,7)’ ::int4range;

—— does not include either 3 or 7, but includes all points in between
SELECT ' (3,7)’ ::intd4range;

—-— includes only the single point 4
SELECT ' [4,4]' ::int4range;

—— includes no points (and will be normalized to ’'empty’)
SELECT ' [4,4)’ ::int4range;

8.17.6. Constructing Ranges

Each range type has a constructor function with the same name as the range type. Using the construc-
tor function is frequently more convenient than writing a range literal constant, since it avoids the
need for extra quoting of the bound values. The constructor function accepts two or three arguments.
The two-argument form constructs a range in standard form (lower bound inclusive, upper bound
exclusive), while the three-argument form constructs a range with bounds of the form specified by
the third argument. The third argument must be one of the strings “ (), “(17, “[)”, or “[1”. For
example:

—— The full form is: lower bound, upper bound, and text argument indicating
-— inclusivity/exclusivity of bounds.
SELECT numrange (1.0, 14.0, " (1');

—-— If the third argument is omitted, ’[)’ 1is assumed.
SELECT numrange (1.0, 14.0);

—— Although ' (]’ is specified here, on display the value will be converted to
—— canonical form, since int8range is a discrete range type (see below).
SELECT int8range(l, 14, ' (1');

—-— Using NULL for either bound causes the range to be unbounded on that side.
SELECT numrange (NULL, 2.2);

8.17.7. Discrete Range Types

A discrete range is one whose element type has a well-defined “step”, such as integer or date. In
these types two elements can be said to be adjacent, when there are no valid values between them.
This contrasts with continuous ranges, where it’s always (or almost always) possible to identify other
element values between two given values. For example, a range over the numeric type is continuous,
as is a range over t imestamp. (Even though t imestamp has limited precision, and so could theoret-
ically be treated as discrete, it’s better to consider it continuous since the step size is normally not of
interest.)

Another way to think about a discrete range type is that there is a clear idea of a “next” or “previous”
value for each element value. Knowing that, it is possible to convert between inclusive and exclusive
representations of a range’s bounds, by choosing the next or previous element value instead of the

179

Chapter 8. Data Types

one originally given. For example, in an integer range type [4, 8] and (3, 9) denote the same set of
values; but this would not be so for a range over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step size for
the element type. The canonicalization function is charged with converting equivalent values of the
range type to have identical representations, in particular consistently inclusive or exclusive bounds.
If a canonicalization function is not specified, then ranges with different formatting will always be
treated as unequal, even though they might represent the same set of values in reality.

The built-in range types int4range, int8range, and daterange all use a canonical form that
includes the lower bound and excludes the upper bound; that is, [). User-defined range types can use
other conventions, however.

8.17.8. Defining New Range Types

Users can define their own range types. The most common reason to do this is to use ranges over
subtypes not provided among the built-in range types. For example, to define a new range type of
subtype float8:

CREATE TYPE floatrange AS RANGE (
subtype = floats§,
subtype_diff = float8mi

)i

SELECT " [1.234, 5.678]’::floatrange;

Because float8 has no meaningful “step”, we do not define a canonicalization function in this ex-
ample.

Defining your own range type also allows you to specify a different subtype B-tree operator class or
collation to use, so as to change the sort ordering that determines which values fall into a given range.

If the subtype is considered to have discrete rather than continuous values, the CREATE TYPE com-
mand should specify a canonical function. The canonicalization function takes an input range value,
and must return an equivalent range value that may have different bounds and formatting. The canoni-
cal output for two ranges that represent the same set of values, for example the integer ranges [1, 7]
and [1, 8),mustbe identical. It doesn’t matter which representation you choose to be the canonical
one, so long as two equivalent values with different formattings are always mapped to the same value
with the same formatting. In addition to adjusting the inclusive/exclusive bounds format, a canonical-
ization function might round off boundary values, in case the desired step size is larger than what the
subtype is capable of storing. For instance, a range type over t imestamp could be defined to have a
step size of an hour, in which case the canonicalization function would need to round off bounds that
weren’t a multiple of an hour, or perhaps throw an error instead.

In addition, any range type that is meant to be used with GiST or SP-GiST indexes should define a
subtype difference, or subtype_diff, function. (The index will still work without subtype_diff,
but it is likely to be considerably less efficient than if a difference function is provided.) The subtype
difference function takes two input values of the subtype, and returns their difference (i.e., X minus
Y) represented as a £1oat8 value. In our example above, the function float8mi that underlies the
regular £1oat8 minus operator can be used; but for any other subtype, some type conversion would
be necessary. Some creative thought about how to represent differences as numbers might be needed,
too. To the greatest extent possible, the subtype_diff function should agree with the sort ordering
implied by the selected operator class and collation; that is, its result should be positive whenever its
first argument is greater than its second according to the sort ordering.

180

Chapter 8. Data Types

A less-oversimplified example of a subtype_di £ £ function is:

CREATE FUNCTION time_subtype_diff(x time, y time) RETURNS float8 AS
" SELECT EXTRACT (EPOCH FROM (x - vy))’ LANGUAGE sgl STRICT IMMUTABLE;

CREATE TYPE timerange AS RANGE (
subtype = time,
subtype_diff = time_subtype_diff
)i

SELECT ' [11:10, 23:00]’::timerange;

See CREATE TYPE for more information about creating range types.

8.17.9. Indexing

GiST and SP-GiST indexes can be created for table columns of range types. For instance, to create a
GiST index:

CREATE INDEX reservation_idx ON reservation USING GIST (during);

A GiST or SP-GiST index can accelerate queries involving these range operators: =, &&, <@, @>, <<,
>>, - |-, &<, and &> (see Table 9-49 for more information).

In addition, B-tree and hash indexes can be created for table columns of range types. For these index
types, basically the only useful range operation is equality. There is a B-tree sort ordering defined
for range values, with corresponding < and > operators, but the ordering is rather arbitrary and not
usually useful in the real world. Range types’ B-tree and hash support is primarily meant to allow
sorting and hashing internally in queries, rather than creation of actual indexes.

8.17.10. Constraints on Ranges

While UNIQUE is a natural constraint for scalar values, it is usually unsuitable for range types. In-
stead, an exclusion constraint is often more appropriate (see CREATE TABLE ... CONSTRAINT ...
EXCLUDE). Exclusion constraints allow the specification of constraints such as “non-overlapping”
on a range type. For example:

CREATE TABLE reservation (

during tsrange,

EXCLUDE USING GIST (during WITH &&)
)

That constraint will prevent any overlapping values from existing in the table at the same time:

INSERT INTO reservation VALUES
(" [2010-01-01 11:30, 2010-01-01 15:00)");
INSERT 0 1

INSERT INTO reservation VALUES
(" [2010-01-01 14:45, 2010-01-01 15:45)");
ERROR: conflicting key value violates exclusion constraint "reservation_during_excl"
DETAIL: Key (during)=(["2010-01-01 14:45:00","2010-01-01 15:45:00")) conflicts
with existing key (during)=(["2010-01-01 11:30:00","2010-01-01 15:00:00")) .

181

Chapter 8. Data Types

You can use the btree_gist extension to define exclusion constraints on plain scalar data types,
which can then be combined with range exclusions for maximum flexibility. For example, after
btree_gist is installed, the following constraint will reject overlapping ranges only if the meet-
ing room numbers are equal:

CREATE EXTENSION btree_gist;
CREATE TABLE room_reservation (

room text,

during tsrange,

EXCLUDE USING GIST (room WITH =, during WITH &&)
)i

INSERT INTO room_reservation VALUES
(7123A", "[2010-01-01 14:00, 2010-01-01 15:00)");
INSERT 0 1

INSERT INTO room_reservation VALUES

("123A’, " [2010-01-01 14:30, 2010-01-01 15:30)");
ERROR: conflicting key value violates exclusion constraint "room_reservation_room_durin
DETAIL: Key (room, during)=(123A, ["2010-01-01 14:30:00","2010-01-01 15:30:00")) confli
with existing key (room, during)=(123A, ["2010-01-01 14:00:00","2010-01-01 15:00:00")).

INSERT INTO room_reservation VALUES
(7123B", "[2010-01-01 14:30, 2010-01-01 15:30)");
INSERT 0 1

8.18. Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
OIDs are not added to user-created tables, unless WITH 01IDS is specified when the table is created,
or the default_with_oids configuration variable is enabled. Type oid represents an object identifier.
There are also several alias types for oid: regproc, regprocedure, regoper, regoperator,
regclass, regtype, regrole, regnamespace, regconfig, and regdictionary. Table 8-24
shows an overview.

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large
enough to provide database-wide uniqueness in large databases, or even in large individual tables. So,
using a user-created table’s OID column as a primary key is discouraged. OIDs are best used only for
references to system tables.

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and
then manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned
confusion if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oid would use. The alias types allow simplified lookup of OID values for
objects. For example, to examine the pg_attribute rows related to a table mytable, one could
write:

SELECT * FROM pg_attribute WHERE attrelid = ’'mytable’ ::regclass;

182

Chapter 8. Data Types

rather than:

SELECT = FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = 'mytable’);

While that doesn’t look all that bad by itself, it’s still oversimplified. A far more complicated sub-
select would be needed to select the right OID if there are multiple tables named mytable in differ-
ent schemas. The regclass input converter handles the table lookup according to the schema path
setting, and so it does the “right thing” automatically. Similarly, casting a table’s OID to regclass
is handy for symbolic display of a numeric OID.

Table 8-24. Object Identifier Types

Name References Description Value Example
oid any numeric object 564182
identifier
regproc Pg_proc function name sum
regprocedure pPg_proc function with argument | sum (int4)
tprS
regoper pg_operator operator name +
regoperator pg_operator operator with argument | » (integer, integer)
types or — (NONE, integer)
regclass pg_class relation name Pg_type
regtype Pg_type data type name integer
regrole pg_authid role name smithee
regnamespace pg_namespace namespace name pg_catalog
regconfig pg_ts_config text search english
configuration
regdictionary pg_ts_dict text search dictionary |simple

All of the OID alias types for objects grouped by namespace accept schema-qualified names, and will
display schema-qualified names on output if the object would not be found in the current search path
without being qualified. The regproc and regoper alias types will only accept input names that are
unique (not overloaded), so they are of limited use; for most uses regprocedure or regoperator
are more appropriate. For regoperator, unary operators are identified by writing NONE for the un-
used operand.

An additional property of most of the OID alias types is the creation of dependencies. If a constant
of one of these types appears in a stored expression (such as a column default expression or view),
it creates a dependency on the referenced object. For example, if a column has a default expression
nextval (‘my_seq’ : :regclass), PostgreSQL understands that the default expression depends on
the sequence my_seq; the system will not let the sequence be dropped without first removing the
default expression. regrole is the only exception for the property. Constants of this type are not
allowed in such expressions.

Note: The OID alias types do not completely follow transaction isolation rules. The planner also
treats them as simple constants, which may result in sub-optimal planning.

Another identifier type used by the system is xid, or transaction (abbreviated xact) identifier. This is
the data type of the system columns xmin and xmax. Transaction identifiers are 32-bit quantities.

183

Chapter 8. Data Types

A third identifier type used by the system is cid, or command identifier. This is the data type of the
system columns cmin and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the system is tid, or tuple identifier (row identifier). This is the data
type of the system column ctid. A tuple ID is a pair (block number, tuple index within block) that
identifies the physical location of the row within its table.

(The system columns are further explained in Section 5.4.)

8.19. pg_Isn Type

The pg_1sn data type can be used to store LSN (Log Sequence Number) data which is a pointer to
a location in the XLOG. This type is a representation of xLogRecPtr and an internal system type of
PostgreSQL.

Internally, an LSN is a 64-bit integer, representing a byte position in the write-ahead log stream. It
is printed as two hexadecimal numbers of up to 8 digits each, separated by a slash; for example,
16/B374D848. The pg_1lsn type supports the standard comparison operators, like = and >. Two
LSNs can be subtracted using the — operator; the result is the number of bytes separating those write-
ahead log positions.

8.20. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a
function’s argument or result type. Each of the available pseudo-types is useful in situations where a
function’s behavior does not correspond to simply taking or returning a value of a specific SQL data
type. Table 8-25 lists the existing pseudo-types.

Table 8-25. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type.

anyelement Indicates that a function accepts any data type
(see Section 36.2.5).

anyarray Indicates that a function accepts any array data

type (see Section 36.2.5).

anynonarray Indicates that a function accepts any non-array
data type (see Section 36.2.5).

anyenum Indicates that a function accepts any enum data
type (see Section 36.2.5 and Section 8.7).

anyrange Indicates that a function accepts any range data
type (see Section 36.2.5 and Section 8.17).

cstring Indicates that a function accepts or returns a
null-terminated C string.

internal Indicates that a function accepts or returns a
server-internal data type.

184

Chapter 8. Data Types

Name

Description

language_handler

A procedural language call handler is declared to
return language_handler

fdw_handler

A foreign-data wrapper handler is declared to
return fdw_handler.

index_am_handler

An index access method handler is declared to
return index_am_handler

tsm_handler

A tablesample method handler is declared to
return tsm_handler

record Identifies a function taking or returning an
unspecified row type.
trigger A trigger function is declared to return

trigger.

event_trigger

An event trigger function is declared to return

event_trigger.

pg_ddl_command

Identifies a representation of DDL commands
that is available to event triggers.

void

Indicates that a function returns no value.

opaque

An obsolete type name that formerly served all

the above purposes.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any
of these pseudo data types. It is up to the function author to ensure that the function will behave safely
when a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implemen-
tation languages. At present most procedural languages forbid use of a pseudo-type as an argument
type, and allow only void and record as a result type (plus trigger or event_trigger when
the function is used as a trigger or event trigger). Some also support polymorphic functions using the

types anyelement, anyarray, anynonarray, anyenum, and anyrange.

The internal pseudo-type is used to declare functions that are meant only to be called internally
by the database system, and not by direct invocation in an SQL query. If a function has at least one
internal-type argument then it cannot be called from SQL. To preserve the type safety of this
restriction it is important to follow this coding rule: do not create any function that is declared to
return internal unless it has at least one internal argument.

185

Chapter 9. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. Users can
also define their own functions and operators, as described in Part V. The psql commands \df and
\do can be used to list all available functions and operators, respectively.

If you are concerned about portability then note that most of the functions and operators described
in this chapter, with the exception of the most trivial arithmetic and comparison operators and some
explicitly marked functions, are not specified by the SQL standard. Some of this extended function-
ality is present in other SQL database management systems, and in many cases this functionality is
compatible and consistent between the various implementations. This chapter is also not exhaustive;
additional functions appear in relevant sections of the manual.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued logic system with true, false, and nul1, which represents “unknown”. Ob-
serve the following truth tables:

a b a AND b aORb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without
affecting the result. But see Section 4.2.14 for more information about the order of evaluation of
subexpressions.

9.2. Comparison Functions and Operators

The u